NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE26921 Query DataSets for GSE26921
Status Public on Jul 04, 2011
Title Determinants of sensitivity to DZNep induced apoptosis in multiple myeloma cells
Organism Homo sapiens
Experiment type Expression profiling by array
Summary The 3-Deazaneplanocin A (DZNep), one of S-adenosylhomocysteine (AdoHcy) hydrolase inhibitors, has shown antitumor activities in a broad range of solid tumors and acute myeloid leukemia. Here, we examined its effects on multiple myeloma (MM) cells and found that, at 500 nM, it potently inhibited growth and induced apoptosis in 2 of 8 MM cell lines. RNA from un-treated and DZNep treated cells was profiled by Affymetrix HG-U133 Plus 2.0 microarray and genes with a significant change in gene expression were determined by significance analysis of microarray (SAM) testing. ALOX5 was the most down-regulated gene (5.8-fold) in sensitive cells and was expressed at low level in resistant cells. The results were corroborated by quantitative RT-PCR. Western-blot analysis indicated ALOX5 was highly expressed only in sensitive cell line H929 and greatly decreased upon DZNep treatment. Ectopic expression of ALOX5 reduced sensitivity to DZNep in H929 cells. Furthermore, down-regulation of ALOX5 by RNA interference could also induce apoptosis in H929. Gene expression analysis on MM patient dataset indicated ALOX5 expression was significantly higher in MM patients compared to normal plasma cells. We also found that Bcl-2 was overexpressed in DZNep insensitive cells, and cotreatment with DZNep and ABT-737, a Bcl-2 family inhibitor, synergistically inhibited growth and induced apoptosis of DZNep insensitive MM cells. Taken together, this study shows one of mechanisms of the DZNep efficacy on MM correlates with its ability to down-regulate the ALOX5 levels. In addition, DZNep insensitivity might be associated with overexpression of Bcl-2, and the combination of ABT-737 and DZNep could synergistically induced apoptosis. These results suggest that DZNep may be exploited therapeutically for a subset of MM.
 
Overall design Cells were treated with 0.5 μmol/L DZNep for 48 h. Total RNA was extracted by using the Qiagen RNeasy Mini kit (Germany). Gene expression was performed using the GeneChip® Human Genome U133A Array (Affymetrix) following the manufacturer’s instructions. Data analysis was performed using GeneSpring software from Agilent Technologies.
 
Contributor(s) Xie Z, Bi C, Huang G, Chng WJ
Citation(s) 21720561
Submission date Jan 27, 2011
Last update date Mar 25, 2019
Contact name Zhigang Xie
E-mail(s) xiezhigang@nus.edu.sg
Organization name National University of Singapore
Department CSI Singapore
Street address 14 Medical Drive, CeLS Building #02-07
City Singapore
ZIP/Postal code 117599
Country Singapore
 
Platforms (1)
GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array
Samples (8)
GSM662887 NCI-H929 DMSO Control
GSM662888 NCI-H929 DZNep treated
GSM662889 MM1.S DMSO Control
Relations
BioProject PRJNA136065

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE26921_RAW.tar 39.7 Mb (http)(custom) TAR (of CEL, CHP)
Processed data included within Sample table
Processed data provided as supplementary file

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap