NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE58959 Query DataSets for GSE58959
Status Public on Jul 01, 2014
Title NLRP3 inflammasome activation-responsive genes in a human monocyte cell line THP-1
Organism Homo sapiens
Experiment type Expression profiling by array
Summary Inflammasome, activated by pathogen-derived and host-derived danger signals, constitutes a multimolecular signaling complex that serves as a platform for caspase-1 (CASP1) activation and interleukin-1beta (IL1B) maturation. The activation of NLRP3 inflammasome requires two-step signals. The first “priming” signal (Signal 1) enhances gene expression of inflammasome components. The second “activation” signal (Signal 2) promotes the assembly of inflammasome components. Deregulated activation of NLRP3 inflammasome contributes to the pathological processes of Alzheimer’s disease (AD) and multiple sclerosis (MS). However, at present, the precise mechanism regulating NLRP3 inflammasome activation and deactivation remains largely unknown. By genome-wide gene expression profiling, we studied the molecular network of NLRP3 inflammasome activation-responsive genes in a human monocyte cell line THP-1 sequentially given two-step signals. We identified the set of 83 NLRP3 inflammasome activation-responsive genes. Among them, we found the NR4A nuclear receptor family NR4A1, NR4A2, and NR4A3, the EGR family EGR1, EGR2, and EGR3, the IkappaB family NFKBIZ, NFKBID, and NFKBIA as a key group of the genes that possibly constitute a negative feedback loop for shutting down inflammation following NLRP3 inflammasome activation. By molecular network analysis, we identified a complex network of NLRP3 inflammasome activation-responsive genes involved in cellular development and death, and immune and inflammatory responses, where transcription factors AP-1, NR4A, and EGR serve as a hub. Thus, NLRP3 inflammasome activation-responsive genes constitute the molecular network composed of a set of negative feedback regulators for prompt resolution of inflammation.
 
Overall design To load the Signal 1 (S1), THP-1 cells were incubated for 3 hours in the culture medium with or without inclusion of 0.2 microgram/ml lipopolysaccharide (LPS). To load the Signal 2 (S2), they were incubated further for 2 hours in the culture medium with inclusion of 10 microM nigericin sodium salt dissolved in ethanol or the equal v/v% concentration of ethanol (vehicle), followed by processing for microarray analysis on Human Gene 1.0 ST Array (Affymetrix).
 
Contributor(s) Satoh J
Citation Kawana N, Yamamoto Y, Kino Y, Satoh J. Molecular network of NLRP3 inflammasome activation-responsive genes in a human monocyte cell line. Austin J Clin Immunol 2014;1(4):10.
Submission date Jul 01, 2014
Last update date Jul 26, 2018
Contact name Jun-ichi Satoh
E-mail(s) satoj@my-pharm.ac.jp
Organization name Meiji Pharmaceutical University
Department Bioinformatics
Lab Molecular Neuropathology
Street address 2-522-1 Noshio, Kiyose
City Tokyo
ZIP/Postal code 204-8588
Country Japan
 
Platforms (1)
GPL6244 [HuGene-1_0-st] Affymetrix Human Gene 1.0 ST Array [transcript (gene) version]
Samples (3)
GSM1423081 THP-1 control
GSM1423082 THP-1 exposed to S1
GSM1423083 THP-1 exposed to S1 + S2
Relations
BioProject PRJNA253986

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE58959_RAW.tar 13.3 Mb (http)(custom) TAR (of CEL, CHP)
Processed data included within Sample table
Processed data provided as supplementary file

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap