NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE76814 Query DataSets for GSE76814
Status Public on Feb 29, 2016
Title ECT2 and AURKB Modulate Formation of Stress Granules Containing Transcripts from Diverse Cellular Pathways in Astrocytoma Cells
Organism Homo sapiens
Experiment type Expression profiling by array
Summary Stress granules are small RNA-protein granules that modify the translational landscape during cellular stress to promote survival. The RhoGTPase RhoA is implicated in the formation of RNA stress granules. Our data demonstrate that the cytokinetic proteins ECT2 and AurkB are localized to stress granules in human astrocytoma cells. AurkB and its downstream target histone-3 are phosphorylated during arsenite-induced stress. Chemical (AZD1152-HQPA) and siRNA inhibition of AurkB results in fewer and smaller stress granules when analyzed utilizing high throughput fluorescent based cellomics assays. RNA immunoprecipitation with the known stress granule aggregates TIAR and G3BP1 was performed on astrocytoma cells and subsequent analysis revealed that astrocytoma stress granules harbour unique mRNAs for various cellular pathways including cellular migration, metabolism, translation and transcriptional regulation. Human astrocytoma cell stress granules contain mRNA that are known to be involved in glioma signaling and the mTOR pathway. These data provide evidence that RNA stress granules are a novel form of epigenetic regulation in astrocytoma cells, which may be targetable by chemical inhibitors and enhance astrocytoma susceptiblity to conventional therapy such as radiation and chemotherapy.
 
Overall design Astrocytoma cells were either untreated or treated with arsenite to induce stress granule formation and RNA immunoprecipitates were analyzed by exon array analysis. RNA species that were enriched in TIAR RIPs and G3BP1 RIPS, respectively were compared to compared to TIAR and G3BP1 RIPs from untreated cells and input controls. Ingenuity pathway analysis was performed on the stress granule enriched mRNAs from the TIAR and G3BP1 RIPs to identify significant functional biology networks.
 
Contributor(s) Rutka JT
Citation(s) 27106762
Submission date Jan 13, 2016
Last update date Feb 18, 2019
Contact name James Rutka
Phone 416-813-6425
Organization name Hospital for Sick Children
Department Cell Biology
Street address 686 Bay Street
City Toronto
State/province Ontario
ZIP/Postal code M5G 0A4
Country Canada
 
Platforms (1)
GPL5175 [HuEx-1_0-st] Affymetrix Human Exon 1.0 ST Array [transcript (gene) version]
Samples (18)
GSM2038329 Tial Stress 1, biological rep 1
GSM2038330 Tial Stress 2, biological rep 2
GSM2038331 Tial Stress 3, biological rep 3
Relations
BioProject PRJNA308648

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE76814_RAW.tar 436.2 Mb (http)(custom) TAR (of CEL)
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap