U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 1 to 20 of 69

1.

Bardet-Biedl syndrome 1

Bardet-Biedl syndrome is an autosomal recessive and genetically heterogeneous ciliopathy characterized by retinitis pigmentosa, obesity, kidney dysfunction, polydactyly, behavioral dysfunction, and hypogonadism (summary by Beales et al., 1999). Eight proteins implicated in the disorder assemble to form the BBSome, a stable complex involved in signaling receptor trafficking to and from cilia (summary by Scheidecker et al., 2014). Genetic Heterogeneity of Bardet-Biedl Syndrome BBS2 (615981) is caused by mutation in a gene on 16q13 (606151); BBS3 (600151), by mutation in the ARL6 gene on 3q11 (608845); BBS4 (615982), by mutation in a gene on 15q22 (600374); BBS5 (615983), by mutation in a gene on 2q31 (603650); BBS6 (605231), by mutation in the MKKS gene on 20p12 (604896); BBS7 (615984), by mutation in a gene on 4q27 (607590); BBS8 (615985), by mutation in the TTC8 gene on 14q32 (608132); BBS9 (615986), by mutation in a gene on 7p14 (607968); BBS10 (615987), by mutation in a gene on 12q21 (610148); BBS11 (615988), by mutation in the TRIM32 gene on 9q33 (602290); BBS12 (615989), by mutation in a gene on 4q27 (610683); BBS13 (615990), by mutation in the MKS1 gene (609883) on 17q23; BBS14 (615991), by mutation in the CEP290 gene (610142) on 12q21, BBS15 (615992), by mutation in the WDPCP gene (613580) on 2p15; BBS16 (615993), by mutation in the SDCCAG8 gene (613524) on 1q43; BBS17 (615994), by mutation in the LZTFL1 gene (606568) on 3p21; BBS18 (615995), by mutation in the BBIP1 gene (613605) on 10q25; BBS19 (615996), by mutation in the IFT27 gene (615870) on 22q12; BBS20 (619471), by mutation in the IFT172 gene (607386) on 9p21; BBS21 (617406), by mutation in the CFAP418 gene (614477) on 8q22; and BBS22 (617119), by mutation in the IFT74 gene (608040) on 9p21. The CCDC28B gene (610162) modifies the expression of BBS phenotypes in patients who have mutations in other genes. Mutations in MKS1, MKS3 (TMEM67; 609884), and C2ORF86 also modify the expression of BBS phenotypes in patients who have mutations in other genes. Although BBS had originally been thought to be a recessive disorder, Katsanis et al. (2001) demonstrated that clinical manifestation of some forms of Bardet-Biedl syndrome requires recessive mutations in 1 of the 6 loci plus an additional mutation in a second locus. While Katsanis et al. (2001) called this 'triallelic inheritance,' Burghes et al. (2001) suggested the term 'recessive inheritance with a modifier of penetrance.' Mykytyn et al. (2002) found no evidence of involvement of the common BBS1 mutation in triallelic inheritance. However, Fan et al. (2004) found heterozygosity in a mutation of the BBS3 gene (608845.0002) as an apparent modifier of the expression of homozygosity of the met390-to-arg mutation in the BBS1 gene (209901.0001). Allelic disorders include nonsyndromic forms of retinitis pigmentosa: RP51 (613464), caused by TTC8 mutation, and RP55 (613575), caused by ARL6 mutation. [from OMIM]

MedGen UID:
422452
Concept ID:
C2936862
Disease or Syndrome
2.

Joubert syndrome 1

Classic Joubert syndrome (JS) is characterized by three primary findings: A distinctive cerebellar and brain stem malformation called the molar tooth sign (MTS). Hypotonia. Developmental delays. Often these findings are accompanied by episodic tachypnea or apnea and/or atypical eye movements. In general, the breathing abnormalities improve with age, truncal ataxia develops over time, and acquisition of gross motor milestones is delayed. Cognitive abilities are variable, ranging from severe intellectual disability to normal. Additional findings can include retinal dystrophy, renal disease, ocular colobomas, occipital encephalocele, hepatic fibrosis, polydactyly, oral hamartomas, and endocrine abnormalities. Both intra- and interfamilial variation are seen. [from GeneReviews]

MedGen UID:
1644883
Concept ID:
C4551568
Disease or Syndrome
3.

Senior-Loken syndrome 1

Leber congenital amaurosis primarily affects the retina, which is the specialized tissue at the back of the eye that detects light and color. This condition causes vision problems, including an increased sensitivity to light (photophobia), involuntary movements of the eyes (nystagmus), and extreme farsightedness (hyperopia). Some people with Senior-Løken syndrome develop the signs of Leber congenital amaurosis within the first few years of life, while others do not develop vision problems until later in childhood.

Nephronophthisis causes fluid-filled cysts to develop in the kidneys beginning in childhood. These cysts impair kidney function, initially causing increased urine production (polyuria), excessive thirst (polydipsia), general weakness, and extreme tiredness (fatigue). Nephronophthisis leads to end-stage renal disease (ESRD) later in childhood or in adolescence. ESRD is a life-threatening failure of kidney function that occurs when the kidneys are no longer able to filter fluids and waste products from the body effectively.

Senior-Løken syndrome is a rare disorder characterized by the combination of two specific features: a kidney condition called nephronophthisis and an eye condition known as Leber congenital amaurosis. [from MedlinePlus Genetics]

MedGen UID:
1639722
Concept ID:
C4551559
Disease or Syndrome
4.

Leber congenital amaurosis 13

Leber congenital amaurosis is also associated with other vision problems, including an increased sensitivity to light (photophobia), involuntary movements of the eyes (nystagmus), and extreme farsightedness (hyperopia). The pupils, which usually expand and contract in response to the amount of light entering the eye, do not react normally to light. Instead, they expand and contract more slowly than normal, or they may not respond to light at all.

Leber congenital amaurosis, also known as LCA, is an eye disorder that is present from birth (congenital). This condition primarily affects the retina, which is the specialized tissue at the back of the eye that detects light and color. People with this disorder typically have severe visual impairment beginning at birth or shortly afterward. The visual impairment tends to be severe and may worsen over time.

At least 20 genetic types of Leber congenital amaurosis have been described. The types are distinguished by their genetic cause, patterns of vision loss, and related eye abnormalities.

A specific behavior called Franceschetti's oculo-digital sign is characteristic of Leber congenital amaurosis. This sign consists of affected individuals poking, pressing, and rubbing their eyes with a knuckle or finger. Poking their eyes often results in the sensation of flashes of light called phosphenes. Researchers suspect that this behavior may contribute to deep-set eyes in affected children.

In very rare cases, delayed development and intellectual disability have been reported in people with the features of Leber congenital amaurosis. Because of the visual loss, affected children may become isolated. Providing children with opportunities to play, hear, touch, understand and other early educational interventions may prevent developmental delays in children with Leber congenital amaurosis. [from MedlinePlus Genetics]

MedGen UID:
382544
Concept ID:
C2675186
Disease or Syndrome
5.

Cranioectodermal dysplasia 1

Cranioectodermal dysplasia (CED) is a ciliopathy with skeletal involvement (narrow thorax, shortened proximal limbs, syndactyly, polydactyly, brachydactyly), ectodermal features (widely spaced hypoplastic teeth, hypodontia, sparse hair, skin laxity, abnormal nails), joint laxity, growth deficiency, and characteristic facial features (frontal bossing, low-set simple ears, high forehead, telecanthus, epicanthal folds, full cheeks, everted lower lip). Most affected children develop nephronophthisis that often leads to end-stage kidney disease in infancy or childhood, a major cause of morbidity and mortality. Hepatic fibrosis and retinal dystrophy are also observed. Dolichocephaly, often secondary to sagittal craniosynostosis, is a primary manifestation that distinguishes CED from most other ciliopathies. Brain malformations and developmental delay may also occur. [from GeneReviews]

MedGen UID:
96586
Concept ID:
C0432235
Disease or Syndrome
6.

Joubert syndrome 3

Classic Joubert syndrome (JS) is characterized by three primary findings: A distinctive cerebellar and brain stem malformation called the molar tooth sign (MTS). Hypotonia. Developmental delays. Often these findings are accompanied by episodic tachypnea or apnea and/or atypical eye movements. In general, the breathing abnormalities improve with age, truncal ataxia develops over time, and acquisition of gross motor milestones is delayed. Cognitive abilities are variable, ranging from severe intellectual disability to normal. Additional findings can include retinal dystrophy, renal disease, ocular colobomas, occipital encephalocele, hepatic fibrosis, polydactyly, oral hamartomas, and endocrine abnormalities. Both intra- and interfamilial variation are seen. [from GeneReviews]

MedGen UID:
332931
Concept ID:
C1837713
Disease or Syndrome
7.

Joubert syndrome 2

Classic Joubert syndrome (JS) is characterized by three primary findings: A distinctive cerebellar and brain stem malformation called the molar tooth sign (MTS). Hypotonia. Developmental delays. Often these findings are accompanied by episodic tachypnea or apnea and/or atypical eye movements. In general, the breathing abnormalities improve with age, truncal ataxia develops over time, and acquisition of gross motor milestones is delayed. Cognitive abilities are variable, ranging from severe intellectual disability to normal. Additional findings can include retinal dystrophy, renal disease, ocular colobomas, occipital encephalocele, hepatic fibrosis, polydactyly, oral hamartomas, and endocrine abnormalities. Both intra- and interfamilial variation are seen. [from GeneReviews]

MedGen UID:
334114
Concept ID:
C1842577
Disease or Syndrome
8.

Bardet-Biedl syndrome 10

BBS10 is characterized by progressive retinal dystrophy, obesity, polydactyly, cognitive impairment, and renal dysplasia (Stoetzel et al., 2006). BBS10 represents a major locus for BBS, with mutations in the BBS10 gene accounting for approximately 20% of BBS patients (Stoetzel et al., 2006; Zaghloul and Katsanis, 2009). For a general phenotypic description and a discussion of genetic heterogeneity of Bardet-Biedl syndrome, see BBS1 (209900). [from OMIM]

MedGen UID:
347909
Concept ID:
C1859568
Disease or Syndrome
9.

Pontocerebellar hypoplasia type 1B

EXOSC3 pontocerebellar hypoplasia (EXOSC3-PCH) is characterized by abnormalities in the posterior fossa and degeneration of the anterior horn cells. At birth, skeletal muscle weakness manifests as hypotonia (sometimes with congenital joint contractures) and poor feeding. In persons with prolonged survival, spasticity, dystonia, and seizures become evident. Within the first year of life respiratory insufficiency and swallowing difficulties are common. Intellectual disability is severe. Life expectancy ranges from a few weeks to adolescence. To date, 82 individuals (from 58 families) with EXOSC3-PCH have been described. [from GeneReviews]

MedGen UID:
766363
Concept ID:
C3553449
Disease or Syndrome
10.

Joubert syndrome 9

Classic Joubert syndrome (JS) is characterized by three primary findings: A distinctive cerebellar and brain stem malformation called the molar tooth sign (MTS). Hypotonia. Developmental delays. Often these findings are accompanied by episodic tachypnea or apnea and/or atypical eye movements. In general, the breathing abnormalities improve with age, truncal ataxia develops over time, and acquisition of gross motor milestones is delayed. Cognitive abilities are variable, ranging from severe intellectual disability to normal. Additional findings can include retinal dystrophy, renal disease, ocular colobomas, occipital encephalocele, hepatic fibrosis, polydactyly, oral hamartomas, and endocrine abnormalities. Both intra- and interfamilial variation are seen. [from GeneReviews]

MedGen UID:
382940
Concept ID:
C2676788
Disease or Syndrome
11.

Short-rib thoracic dysplasia 6 with or without polydactyly

Short-rib thoracic dysplasia (SRTD) with or without polydactyly refers to a group of autosomal recessive skeletal ciliopathies that are characterized by a constricted thoracic cage, short ribs, shortened tubular bones, and a 'trident' appearance of the acetabular roof. SRTD encompasses Ellis-van Creveld syndrome (EVC) and the disorders previously designated as Jeune syndrome or asphyxiating thoracic dystrophy (ATD), short rib-polydactyly syndrome (SRPS), and Mainzer-Saldino syndrome (MZSDS). Polydactyly is variably present, and there is phenotypic overlap in the various forms of SRTDs, which differ by visceral malformation and metaphyseal appearance. Nonskeletal involvement can include cleft lip/palate as well as anomalies of major organs such as the brain, eye, heart, kidneys, liver, pancreas, intestines, and genitalia. Some forms of SRTD are lethal in the neonatal period due to respiratory insufficiency secondary to a severely restricted thoracic cage, whereas others are compatible with life (summary by Huber and Cormier-Daire, 2012 and Schmidts et al., 2013). There is phenotypic overlap with the cranioectodermal dysplasias (Sensenbrenner syndrome; see CED1, 218330). For a discussion of genetic heterogeneity of short-rib thoracic dysplasia, see SRTD1 (208500). [from OMIM]

MedGen UID:
44252
Concept ID:
C0024507
Disease or Syndrome
12.

Leber congenital amaurosis 14

Autosomal recessive childhood-onset severe retinal dystrophy is a heterogeneous group of disorders affecting rod and cone photoreceptors simultaneously. The most severe cases are termed Leber congenital amaurosis, whereas the less aggressive forms are usually considered juvenile retinitis pigmentosa (Gu et al., 1997). For a general phenotypic description and a discussion of genetic heterogeneity of Leber congenital amaurosis, see LCA1 (204000); for retinitis pigmentosa, see 268000. [from OMIM]

MedGen UID:
442375
Concept ID:
C2750063
Disease or Syndrome
13.

Joubert syndrome 7

Classic Joubert syndrome (JS) is characterized by three primary findings: A distinctive cerebellar and brain stem malformation called the molar tooth sign (MTS). Hypotonia. Developmental delays. Often these findings are accompanied by episodic tachypnea or apnea and/or atypical eye movements. In general, the breathing abnormalities improve with age, truncal ataxia develops over time, and acquisition of gross motor milestones is delayed. Cognitive abilities are variable, ranging from severe intellectual disability to normal. Additional findings can include retinal dystrophy, renal disease, ocular colobomas, occipital encephalocele, hepatic fibrosis, polydactyly, oral hamartomas, and endocrine abnormalities. Both intra- and interfamilial variation are seen. [from GeneReviews]

MedGen UID:
369401
Concept ID:
C1969053
Disease or Syndrome
14.

Donnai-Barrow syndrome

Donnai-Barrow syndrome (DBS) is characterized by typical craniofacial features (large anterior fontanelle, wide metopic suture, widow's peak, markedly widely spaced eyes, enlarged globes, downslanted palpebral fissures, posteriorly rotated ears, depressed nasal bridge, and short nose. Ocular complications include high myopia, retinal detachment, retinal dystrophy, and progressive vision loss. Additional common features include agenesis of the corpus callosum, sensorineural hearing loss, intellectual disability, and congenital diaphragmatic hernia and/or omphalocele. Both inter- and intrafamilial phenotypic variability are observed. [from GeneReviews]

MedGen UID:
347406
Concept ID:
C1857277
Disease or Syndrome
15.

Multiple congenital anomalies-hypotonia-seizures syndrome 2

Multiple congenital anomalies-hypotonia-seizures syndrome-2 (MCAHS2) is an X-linked recessive neurodevelopmental disorder characterized by dysmorphic features, neonatal hypotonia, early-onset myoclonic seizures, and variable congenital anomalies involving the central nervous, cardiac, and urinary systems. Some affected individuals die in infancy (summary by Johnston et al., 2012). The phenotype shows clinical variability with regard to severity and extraneurologic features. However, most patients present in infancy with early-onset epileptic encephalopathy associated with developmental arrest and subsequent severe neurologic disability; these features are consistent with a form of developmental and epileptic encephalopathy (DEE) (summary by Belet et al., 2014, Kato et al., 2014). The disorder is caused by a defect in glycosylphosphatidylinositol (GPI) biosynthesis. For a discussion of genetic heterogeneity of MCAHS, see MCAHS1 (614080). For a discussion of nomenclature and genetic heterogeneity of DEE, see 308350. For a discussion of genetic heterogeneity of GPI biosynthesis defects, see GPIBD1 (610293). [from OMIM]

MedGen UID:
477139
Concept ID:
C3275508
Disease or Syndrome
16.

Saldino-Mainzer syndrome

Short-rib thoracic dysplasia (SRTD) with or without polydactyly refers to a group of autosomal recessive skeletal ciliopathies that are characterized by a constricted thoracic cage, short ribs, shortened tubular bones, and a 'trident' appearance of the acetabular roof. SRTD encompasses Ellis-van Creveld syndrome (EVC) and the disorders previously designated as Jeune syndrome or asphyxiating thoracic dystrophy (ATD), short rib-polydactyly syndrome (SRPS), and Mainzer-Saldino syndrome (MZSDS). Polydactyly is variably present, and there is phenotypic overlap in the various forms of SRTDs, which differ by visceral malformation and metaphyseal appearance. Nonskeletal involvement can include cleft lip/palate as well as anomalies of major organs such as the brain, eye, heart, kidneys, liver, pancreas, intestines, and genitalia. Some forms of SRTD are lethal in the neonatal period due to respiratory insufficiency secondary to a severely restricted thoracic cage, whereas others are compatible with life (summary by Huber and Cormier-Daire, 2012 and Schmidts et al., 2013). There is phenotypic overlap with the cranioectodermal dysplasias (Sensenbrenner syndrome; see CED1, 218330). For a discussion of genetic heterogeneity of short-rib thoracic dysplasia, see SRTD1 (208500). [from OMIM]

MedGen UID:
341455
Concept ID:
C1849437
Disease or Syndrome
17.

Glycogen storage disease due to phosphoglycerate kinase 1 deficiency

Phosphoglycerate kinase-1 deficiency is an X-linked recessive condition with a highly variable clinical phenotype that includes hemolytic anemia, myopathy, and neurologic involvement. Patients can express 1, 2, or all 3 of these manifestations (Shirakawa et al., 2006). [from OMIM]

MedGen UID:
410166
Concept ID:
C1970848
Disease or Syndrome
18.

Syndromic microphthalmia type 5

The association of a range of ocular anomalies (anophthalmia, microphthalmia and retinal abnormalities) with variable developmental delay and central nervous system malformations. Less than 20 cases have been reported in the literature so far. The clinical picture is highly variable, even between affected members of the same family. Severe developmental delay was noted in some patients, whilst others showed normal cognitive development. Pituitary dysfunction, leading to growth hormone deficiency and short stature, or combined pituitary hormone deficiency, has also been reported. The syndrome is caused by heterozygous mutations in the OTX2 gene (14q22.3). [from SNOMEDCT_US]

MedGen UID:
350491
Concept ID:
C1864690
Disease or Syndrome
19.

Joubert syndrome 16

Classic Joubert syndrome (JS) is characterized by three primary findings: A distinctive cerebellar and brain stem malformation called the molar tooth sign (MTS). Hypotonia. Developmental delays. Often these findings are accompanied by episodic tachypnea or apnea and/or atypical eye movements. In general, the breathing abnormalities improve with age, truncal ataxia develops over time, and acquisition of gross motor milestones is delayed. Cognitive abilities are variable, ranging from severe intellectual disability to normal. Additional findings can include retinal dystrophy, renal disease, ocular colobomas, occipital encephalocele, hepatic fibrosis, polydactyly, oral hamartomas, and endocrine abnormalities. Both intra- and interfamilial variation are seen. [from GeneReviews]

MedGen UID:
482536
Concept ID:
C3280906
Disease or Syndrome
20.

Microphthalmia with brain and digit anomalies

This syndrome has characteristics of anophthalmia or microphthalmia, retinal dystrophy, and/or myopia, associated in some cases with cerebral anomalies. It has been described in two families. Polydactyly may also be present. Linkage analysis allowed identification of mutations in the BMP4 gene, which has already been shown to play a role in eye development. [from SNOMEDCT_US]

MedGen UID:
355268
Concept ID:
C1864689
Disease or Syndrome
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...