U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Setdb1 is required for persistence of H3K9me3 and repression of endogenous retroviruses in mouse primordial germ cells

(Submitter supplied) Transcription of endogenous retroviruses (ERVs) is inhibited by de novo DNA methylation during gametogenesis, a process initiated after birth in oocytes and at ~E15.5 in prospermatogonia. Earlier in germline development however, the genome, including most retrotransposons, is progressively demethylated, with young ERVK and ERV1 elements retaining intermediate methylation levels. As DNA methylation reaches a low point in E13.5 primordial germ cells (PGCs) of both sexes, we determined whether retrotransposons are marked by H3K9me3 and H3K27me3 using a recently developed low input ChIP-seq method. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Methylation profiling by high throughput sequencing
Platform:
GPL13112
28 Samples
Download data: BW, TXT
Series
Accession:
GSE60377
ID:
200060377
2.

hnRNP K coordinates transcriptional silencing by SETDB1 in embryonic stem cells

(Submitter supplied) RNA-seq of hnRNP K-depleted mouse embryonic stem cells
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
4 Samples
Download data: BW, TXT
Series
Accession:
GSE84386
ID:
200084386
3.

Dominant role of DNA methylation over H3K9me3 in ERV silencing during embryonic endoderm development [ChIP-Suv39]

(Submitter supplied) Silencing of endogenous retroviruses (ERVs) is largely mediated by repressive chromatin modifications, such as H3K9me3 and DNA methylation. Their impact on ERV silencing differs in various cell types and, no systematic analyses on the interdependence between H3K9me3 and DNA methylation have been performed in differentiated cells. Here we show that deletion of the H3K9me3 HMTase Setdb1 in mouse embryonic endoderm results in ERV de-repression in only a subset of endoderm cells. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18480
8 Samples
Download data: BIGWIG
Series
Accession:
GSE169464
ID:
200169464
4.

Dominant role of DNA methylation over H3K9me3 in ERV silencing during embryonic endoderm development [ChIP-Dnmt]

(Submitter supplied) Silencing of endogenous retroviruses (ERVs) is largely mediated by repressive chromatin modifications, such as H3K9me3 and DNA methylation. Their impact on ERV silencing differs in various cell types and, no systematic analyses on the interdependence between H3K9me3 and DNA methylation have been performed in differentiated cells. Here we show that deletion of the H3K9me3 HMTase Setdb1 in mouse embryonic endoderm results in ERV de-repression in only a subset of endoderm cells. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18480
12 Samples
Download data: BIGWIG
Series
Accession:
GSE169463
ID:
200169463
5.

Dominant role of DNA methylation over H3K9me3 in ERV silencing during embryonic endoderm development [RNA-Seq Suv39]

(Submitter supplied) Silencing of endogenous retroviruses (ERVs) is largely mediated by repressive chromatin modifications, such as H3K9me3 and DNA methylation. Their impact on ERV silencing differs in various cell types and, no systematic analyses on the interdependence between H3K9me3 and DNA methylation have been performed in differentiated cells. Here we show that deletion of the H3K9me3 HMTase Setdb1 in mouse embryonic endoderm results in ERV de-repression in only a subset of endoderm cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18480
12 Samples
Download data: RESULTS
Series
Accession:
GSE169462
ID:
200169462
6.

Dominant role of DNA methylation over H3K9me3 for IAP silencing in endoderm

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18480
104 Samples
Download data: BIGWIG, RESULTS, TXT
Series
Accession:
GSE139128
ID:
200139128
7.

Dominant role of DNA methylation over H3K9me3 in ERV silencing during embryonic endoderm development [ChIP-Seq]

(Submitter supplied) Silencing of endogenous retroviruses (ERVs) is largely mediated by repressive chromatin modifications, such as H3K9me3 and DNA methylation. Their impact on ERV silencing differs in various cell types and, no systematic analyses on the interdependence between H3K9me3 and DNA methylation have been performed in differentiated cells. Here we show that deletion of the H3K9me3 HMTase Setdb1 in mouse embryonic endoderm results in ERV de-repression in only a subset of endoderm cells. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18480
36 Samples
Download data: BIGWIG
Series
Accession:
GSE139127
ID:
200139127
8.

Dominant role of DNA methylation over H3K9me3 in ERV silencing during embryonic endoderm development [RNA-Seq]

(Submitter supplied) Silencing of endogenous retroviruses (ERVs) is largely mediated by repressive chromatin modifications, such as H3K9me3 and DNA methylation. Their impact on ERV silencing differs in various cell types and, no systematic analyses on the interdependence between H3K9me3 and DNA methylation have been performed in differentiated cells. Here we show that deletion of the H3K9me3 HMTase Setdb1 in mouse embryonic endoderm results in ERV de-repression in only a subset of endoderm cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18480
36 Samples
Download data: TXT
Series
Accession:
GSE139126
ID:
200139126
9.

Maintenance of DNA methylation in embryonic stem cells depends on the histone H3K9 methyltransferases

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Methylation profiling by high throughput sequencing
Platforms:
GPL11002 GPL13112
22 Samples
Download data: BW
Series
Accession:
GSE47894
ID:
200047894
10.

Maintenance of DNA methylation in embryonic stem cells depends on the histone H3K9 methyltransferases (Dnmt3ab KO Methyl-Seq)

(Submitter supplied) During mammalian development DNA methylation patterns need to be reset in primordial germ cells (PGC) and preimplantation embryos. However, many retro-transposons and imprinted genes are resistant to such global epigenetic reprogramming via hitherto undefined mechanisms. Here, we report that some of these sequences are immune to widespread erasure of DNA methylation in the mouse embryonic stem cells (mESCs) lacking de novo DNA methyltransferases. more...
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing
Platforms:
GPL13112 GPL11002
6 Samples
Download data: BW
Series
Accession:
GSE47893
ID:
200047893
11.

Maintenance of DNA methylation in embryonic stem cells depends on the histone H3K9 methyltransferases (K9 KO 5hmC-capture-seq)

(Submitter supplied) During mammalian development DNA methylation patterns need to be reset in primordial germ cells (PGC) and preimplantation embryos. However, many retro-transposons and imprinted genes are resistant to such global epigenetic reprogramming via hitherto undefined mechanisms. Here, we report that some of these sequences are immune to widespread erasure of DNA methylation in the mouse embryonic stem cells (mESCs) lacking de novo DNA methyltransferases. more...
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: BW
Series
Accession:
GSE47892
ID:
200047892
12.

Maintenance of DNA methylation in embryonic stem cells depends on the histone H3K9 methyltransferases (K9 KO Methyl-Seq)

(Submitter supplied) During mammalian development DNA methylation patterns need to be reset in primordial germ cells (PGC) and preimplantation embryos. However, many retro-transposons and imprinted genes are resistant to such global epigenetic reprogramming via hitherto undefined mechanisms. Here, we report that some of these sequences are immune to widespread erasure of DNA methylation in the mouse embryonic stem cells (mESCs) lacking de novo DNA methyltransferases. more...
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: BW
Series
Accession:
GSE47890
ID:
200047890
13.

Maintenance of DNA methylation in embryonic stem cells depends on the histone H3K9 methyltransferases (K9 KO ChIP-Seq)

(Submitter supplied) During mammalian development DNA methylation patterns need to be reset in primordial germ cells (PGC) and preimplantation embryos. However, many retro-transposons and imprinted genes are resistant to such global epigenetic reprogramming via hitherto undefined mechanisms. Here, we report that some of these sequences are immune to widespread erasure of DNA methylation in the mouse embryonic stem cells (mESCs) lacking de novo DNA methyltransferases. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL11002 GPL13112
4 Samples
Download data: BW
Series
Accession:
GSE47887
ID:
200047887
14.

Maintenance of DNA methylation in embryonic stem cells depends on the histone H3K9 methyltransferases (Dnmt3ab KO RNA-Seq)

(Submitter supplied) During mammalian development DNA methylation patterns need to be reset in primordial germ cells (PGC) and preimplantation embryos. However, many retro-transposons and imprinted genes are resistant to such global epigenetic reprogramming via hitherto undefined mechanisms. Here, we report that some of these sequences are immune to widespread erasure of DNA methylation in the mouse embryonic stem cells (mESCs) lacking de novo DNA methyltransferases. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL11002 GPL13112
4 Samples
Download data: BW
Series
Accession:
GSE47883
ID:
200047883
15.

Maintenance of DNA methylation in embryonic stem cells depends on the histone H3K9 methyltransferases (Dnmt3ab KO ChIP-Seq)

(Submitter supplied) During mammalian development DNA methylation patterns need to be reset in primordial germ cells (PGC) and preimplantation embryos. However, many retro-transposons and imprinted genes are resistant to such global epigenetic reprogramming via hitherto undefined mechanisms. Here, we report that some of these sequences are immune to widespread erasure of DNA methylation in the mouse embryonic stem cells (mESCs) lacking de novo DNA methyltransferases. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL11002 GPL13112
4 Samples
Download data: BW
Series
Accession:
GSE47878
ID:
200047878
16.

SETDB1 Represses Endogenous and Exogenous Retroviruses in B Lymphocytes

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Expression profiling by high throughput sequencing
Platforms:
GPL10740 GPL17021
10 Samples
Download data: BW, CEL, CHP
Series
Accession:
GSE69504
ID:
200069504
17.

SETDB1 Represses Endogenous and Exogenous Retroviruses in B Lymphocytes [RNA-Seq]

(Submitter supplied) Genome stability relies on epigenetic mechanisms that enforce repression of endogenous retroviruses (ERVs). Current evidence suggests that distinct chromatin-based mechanisms repress ERVs in cells of embryonic origin (histone methylation-dominant) versus more differentiated cells (DNA methylation-dominant). However, the latter aspect of this model has not been tested. Remarkably, and in contrast to the prevailing model, we find that repressive histone methylation catalyzed by the enzyme SETDB1 is critical for suppression of specific ERV families and exogenous retroviruses in committed B-lineage cells from adult mice. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
2 Samples
Download data: BW, TXT
Series
Accession:
GSE69464
ID:
200069464
18.

SETDB1 Represses Endogenous and Exogenous Retroviruses in B Lymphocytes [array]

(Submitter supplied) Genome stability relies on epigenetic mechanisms that enforce repression of endogenous retroviruses (ERVs). Current evidence suggests that distinct chromatin-based mechanisms repress ERVs in cells of embryonic origin (histone methylation-dominant) versus more differentiated cells (DNA methylation-dominant). However, the latter aspect of this model has not been tested. Remarkably, and in contrast to the prevailing model, we find that repressive histone methylation catalyzed by the enzyme SETDB1 is critical for suppression of specific ERV families and exogenous retroviruses in committed B-lineage cells from adult mice. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL10740
8 Samples
Download data: CEL, CHP
Series
Accession:
GSE69378
ID:
200069378
19.

A somatic role for the histone methyltransferase Setdb1 in endogenous retrovirus silencing

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18480
34 Samples
Download data: BW, TXT
Series
Accession:
GSE102490
ID:
200102490
20.

A somatic role for the histone methyltransferase Setdb1 in endogenous retrovirus silencing [ChIP-Seq]

(Submitter supplied) Subsets of endogenous retroviruses (ERVs) are derepressed in mouse embryonic stem cells (mESCs) deficient for Setdb1, which catalyzes histone H3 lysine 9 trimethylation (H3K9me3). Most of those ERVs, including IAPs, remain silent if Setdb1 is deleted in differentiated embryonic cells; however they are derepressed when deficient for Dnmt1, suggesting that Setdb1 is dispensable for ERV silencing in somatic cells. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18480
7 Samples
Download data: BED, BW
Series
Accession:
GSE102487
ID:
200102487
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=3|qty=2|blobid=MCID_67383ac1f42521130b3cf6df|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Support Center