U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate [CPC_ATAC-seq]

(Submitter supplied) Generation of widely differing and specialized cell types from a single totipotent zygote involves large-scale transcriptional changes and chromatin reorganization. Pioneer transcription factors play key roles in programming the epigenome and facilitating recruitment of additional regulatory factors during successive cell lineage specification and differentiation steps. Here we show that Isl1 acts as a pioneer factor driving cardiomyocyte lineage commitment by shaping the chromatin landscape of cardiac progenitor cells. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL18635
2 Samples
Download data: BED, BW
Series
Accession:
GSE81815
ID:
200081815
2.

Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate [Isl1_E8_75_RNA_seq]

(Submitter supplied) Generation of widely differing and specialized cell types from a single totipotent zygote involves large-scale transcriptional changes and chromatin reorganization. Pioneer transcription factors play key roles in programming the epigenome and facilitating recruitment of additional regulatory factors during successive cell lineage specification and differentiation steps. Here we show that Isl1 acts as a pioneer factor driving cardiomyocyte lineage commitment by shaping the chromatin landscape of cardiac progenitor cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
8 Samples
Download data: BW, TXT
Series
Accession:
GSE126406
ID:
200126406
3.

Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate [Isl1_Hypo_E10_5_RNA_seq]

(Submitter supplied) Generation of widely differing and specialized cell types from a single totipotent zygote involves large-scale transcriptional changes and chromatin reorganization. Pioneer transcription factors play key roles in programming the epigenome and facilitating recruitment of additional regulatory factors during successive cell lineage specification and differentiation steps. Here we show that Isl1 acts as a pioneer factor driving cardiomyocyte lineage commitment by shaping the chromatin landscape of cardiac progenitor cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL23479
8 Samples
Download data: BW, TXT
Series
Accession:
GSE126403
ID:
200126403
4.

Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate [Isl1_RNA_seq]

(Submitter supplied) Generation of widely differing and specialized cell types from a single totipotent zygote involves large-scale transcriptional changes and chromatin reorganization. Pioneer transcription factors play key roles in programming the epigenome and facilitating recruitment of additional regulatory factors during successive cell lineage specification and differentiation steps. Here we show that Isl1 acts as a pioneer factor driving cardiomyocyte lineage commitment by shaping the chromatin landscape of cardiac progenitor cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
4 Samples
Download data: BW, TXT
Series
Accession:
GSE126401
ID:
200126401
5.

Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate [ISL1_CPC_ChIP_seq]

(Submitter supplied) Generation of widely differing and specialized cell types from a single totipotent zygote involves large-scale transcriptional changes and chromatin reorganization. Pioneer transcription factors play key roles in programming the epigenome and facilitating recruitment of additional regulatory factors during successive cell lineage specification and differentiation steps. Here we show that Isl1 acts as a pioneer factor driving cardiomyocyte lineage commitment by shaping the chromatin landscape of cardiac progenitor cells. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL21493
3 Samples
Download data: BW, TXT
Series
Accession:
GSE126400
ID:
200126400
6.

Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate [ISL1_Embryo_Chip_seq]

(Submitter supplied) Generation of widely differing and specialized cell types from a single totipotent zygote involves large-scale transcriptional changes and chromatin reorganization. Pioneer transcription factors play key roles in programming the epigenome and facilitating recruitment of additional regulatory factors during successive cell lineage specification and differentiation steps. Here we show that Isl1 acts as a pioneer factor driving cardiomyocyte lineage commitment by shaping the chromatin landscape of cardiac progenitor cells. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL21493
2 Samples
Download data: BW, TXT
Series
Accession:
GSE126398
ID:
200126398
7.

Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate [E8.75_Embryo_ATAC-seq]

(Submitter supplied) Generation of widely differing and specialized cell types from a single totipotent zygote involves large-scale transcriptional changes and chromatin reorganization. Pioneer transcription factors play key roles in programming the epigenome and facilitating recruitment of additional regulatory factors during successive cell lineage specification and differentiation steps. Here we show that Isl1 acts as a pioneer factor driving cardiomyocyte lineage commitment by shaping the chromatin landscape of cardiac progenitor cells. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17021
9 Samples
Download data: BW, TXT
Series
Accession:
GSE110436
ID:
200110436
8.

Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
4 related Platforms
40 Samples
Download data: BW, TXT
Series
Accession:
GSE80383
ID:
200080383
9.

Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate [Baf60c_RNA-seq]

(Submitter supplied) Generation of widely differing and specialized cell types from a single totipotent zygote involves large-scale transcriptional changes and chromatin reorganization. Pioneer transcription factors play key roles in programming the epigenome and facilitating recruitment of additional regulatory factors during successive cell lineage specification and differentiation steps. Here we show that Isl1 acts as a pioneer factor driving cardiomyocyte lineage commitment by shaping the chromatin landscape of cardiac progenitor cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
4 Samples
Download data: XLSX
Series
Accession:
GSE80382
ID:
200080382
10.

ISL1 and JMJD3 synergistically control cardiac differentiation of embryonic stem cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
5 Samples
Download data: BED, XLS
Series
Accession:
GSE79701
ID:
200079701
11.

ISL1 and JMJD3 synergistically control cardiac differentiation of embryonic stem cells (RNA-Seq)

(Submitter supplied) ISL1 is expressed in cardiac progenitor cells and plays critical roles in cardiac lineage differentiation and heart development. Cardiac progenitor cells hold great potential for clinical and translational applications. However the mechanisms underlying ISL1 function in cardiac progenitor cells have not been fully elucidated. Here we uncover a hierarchical role of ISL1 in cardiac progenitor cells, showing that ISL1 directly regulates hundreds of potential downstream targets that are implicated in cardiac differentiation, through an epigenetic mechanism. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: XLS
Series
Accession:
GSE79700
ID:
200079700
12.

ISL1 and JMJD3 synergistically control cardiac differentiation of embryonic stem cells (ChIP-Seq)

(Submitter supplied) ISL1 is expressed in cardiac progenitor cells and plays critical roles in cardiac lineage differentiation and heart development. Cardiac progenitor cells hold great potential for clinical and translational applications. However the mechanisms underlying ISL1 function in cardiac progenitor cells have not been fully elucidated. Here we uncover a hierarchical role of ISL1 in cardiac progenitor cells, showing that ISL1 directly regulates hundreds of potential downstream targets that are implicated in cardiac differentiation, through an epigenetic mechanism. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
3 Samples
Download data: BED, XLS
Series
Accession:
GSE79699
ID:
200079699
13.

Single cell RNA-sequencing (scRNA-seq) of ISL1 knockout (KO) or knockdown and NKX2.5 KO compared to WT in cardiac progenitors (CPs); scRNA-seq of ISL1 KO compared to WT in motor neuron progenitors (MNPs)

(Submitter supplied) Previous evidence suggested ISL1 plays unique transcriptional roles between vastly different cell types in developing humans. Single cell RNA-sequencing (scRNA-seq) of in vitro progenitor cells detailed ISL1's cell-type-specific roles in human cardiac progenitors (CPs) and motor neuron progenitors (MNPs). In addition, scRNA-seq confirmed ISL1 and NKX2.5 likely regulate common transcriptional pathways.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL24676 GPL18573
17 Samples
Download data: CSV
Series
Accession:
GSE223339
ID:
200223339
14.

The multi-lineage transcription factor ISL1 controls cardiomyocyte cell fate through interaction with NKX2.5

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL24676 GPL20301 GPL18573
53 Samples
Download data: BED, CSV
Series
Accession:
GSE195476
ID:
200195476
15.

Genomic occupancy of TFs ISL1 and NKX2.5 in cardiac and neural populations

(Submitter supplied) ChIP-sequencing demonstrated that ISL1 binds cardiac DNA in a cell-type-specific manner, and that NKX2.5 is both necessary and sufficient for this localization.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL20301 GPL18573
36 Samples
Download data: BED
Series
Accession:
GSE195474
ID:
200195474
16.

Epigenetic Profiling of Cardiac Pacemaker Cells Reveals a Conserved Isl1 Enhancer That Regulates Sinoatrial Node Development and Function

(Submitter supplied) Cardiac pacemaker cells (PCs) in the sinoatrial node (SAN) have a distinct gene expression program that allows them to fire automatically and initiate the heartbeat. Although critical SAN transcription factors, including Isl1, have been identified, the cis-regulatory architecture that governs PC-specific gene expression is not understood, and discrete enhancers required for gene regulation in the SAN have not been identified. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL21103
13 Samples
Download data: BW, TXT
Series
Accession:
GSE148515
ID:
200148515
17.

STAT3 promotes motor neuron differentiation by collaborating with motor neuron-specific LIM complex

(Submitter supplied) The motor neuron (MN)–hexamer complex consisting of LIM homeobox 3, Islet-1, and nuclear LIM interactor is a key determinant of motor neuron specification and differentiation. To gain insights into the transcriptional network in motor neuron development, we performed a genome-wide ChIP-sequencing analysis and found that the MN–hexamer directly regulates a wide array of motor neuron genes by binding to the HxRE (hexamer response element) shared among the target genes. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9185
4 Samples
Download data: TXT
Series
Accession:
GSE50993
ID:
200050993
18.

Genome-wide mRNA expression analyses revealed dysregulation of genes important for SAN function in Hcn4-CreERT2;Isl1 mutants.

(Submitter supplied) Understanding factors that drive development and function of the sinoatrial node (SAN) is crucial to development of potential therapies for sinus arrhythmias, including potential generation of biological pacemakers. Here, we identify a key cell autonomous role for the LIM homeodomain transcription factor ISL1 for survival, proliferation and function of pacemaker cells throughout development. Analysis of several Isl1 mutant mouse lines, including one in which Isl1 was specifically ablated in SAN (Hcn4- CreERT2;Isl1) revealed an early requirement for Isl1 within SAN for embryonic viability. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: TXT
Series
Accession:
GSE69097
ID:
200069097
19.

Genome-wide chromatin-immunoprecipitation studies of purified SAN cells reveals critical direct targets of ISL1 and suggests potential co-factor families for ISL1 action in SAN cells

(Submitter supplied) Understanding factors that drive development and function of the sinoatrial node (SAN) is crucial to development of potential therapies for sinus arrhythmias, including potential generation of biological pacemakers. Here, we identify a key cell autonomous role for the LIM homeodomain transcription factor ISL1 for survival, proliferation and function of pacemaker cells throughout development. Chromatin immunoprecipitation assays performed utilizing antibody to ISL1 in chromatin extracts from FACS purified SAN cells demonstrated that ISL1 directly binds genomic regions within several genes critical for normal pacemaker function, including subunits of the L-type calcium channel, Ank2, and Tbx3. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17021
2 Samples
Download data: TXT
Series
Accession:
GSE68974
ID:
200068974
20.

Genome-wide mRNA expression analyses revealed dysregulation of genes important for sympathetic neuron development in isl1 cko and hypomorphic mutant embryos.

(Submitter supplied) Understanding factors that drive development and function of the sympathetic neuron is crucial to development of potential therapies for neuroblastoma. Here, we identify a key cell autonomous role for the LIM homeodomain transcription factor ISL1 for survival, proliferation and differentiation of sympathetic neurons throughout development. Analysis of several Isl1 mutant mouse lines, including one in which Isl1 was specifically ablated in sympathetic neuron (Wnt1-cre;Isl1 f/f) revealed an early requirement for Isl1 within sympathetic neurons for proliferation and surrvial. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
8 Samples
Download data: TXT
Series
Accession:
GSE93306
ID:
200093306
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=14|qty=3|blobid=MCID_6733ddda5c1af073747bdcfa|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center