U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

piRNA-mediated regulation of transposon alternative splicing in soma and germline

(Submitter supplied) Transposable elements can drive genome evolution, but their enhanced activity is detrimental to the host and therefore must be tightly regulated. The piwi-interacting small RNAs (piRNAs) pathway is critically important for transposable element regulation, by inducing transcriptional silencing or post-transcriptional decay of mRNAs. We show that piRNAs and piRNA biogenesis components regulate pre-mRNA splicing of P transposable element transcripts in vivo, leading to the production of the non-transposase-encoding mature mRNA isoform in germ cells. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL17275
20 Samples
Download data: BEDGRAPH, BIGWIG
Series
Accession:
GSE103582
ID:
200103582
2.

Silencio/CG9754 connects the Piwi-piRNA complex to the cellular heterochromatin machinery

(Submitter supplied) The repression of transposable elements in eukaryotes often involves their transcriptional silencing via targeted chromatin modifications. In animal gonads, nuclear Argonaute proteins of the PIWI-clade complexed with small guide RNAs (piRNAs) serve as sequence specificity determinants in this process. How binding of nuclear PIWI-piRNA complexes to nascent transcripts orchestrates heterochromatin formation and transcriptional silencing is unknown. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platform:
GPL13304
46 Samples
Download data: BEDGRAPH, BW, XLSX
Series
Accession:
GSE74097
ID:
200074097
3.

A Pandas complex adapted for piRNA-guided transposon silencing and heterochromatin formation

(Submitter supplied) The repression of transposons by the Piwi-interacting RNA (piRNA) pathway is essential to protect animal germ cells. In Drosophila ovaries, Panoramix (Panx) enforces transcriptional silencing by binding to the target-engaged Piwi-piRNA complex, although the precise mechanisms by which this occur remain elusive. Here, we show that Panx functions together with a germline specific paralogue of a nuclear export factor, dNxf2, and its cofactor dNxt1 (p15) as a ternary complex to suppress transposon expression. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Other
Platforms:
GPL23702 GPL17275
16 Samples
Download data: BIGWIG
Series
Accession:
GSE130042
ID:
200130042
4.

A Pandas complex adapted for piRNA-guided transposon silencing (CLIP-seq)

(Submitter supplied) The repression of transposons by the Piwi-interacting RNA (piRNA) pathway is essential to protect animal germ cells. In Drosophila ovaries, Panoramix (Panx) enforces transcriptional silencing by binding to the target-engaged Piwi-piRNA complex, although the precise mechanisms by which this occur remain elusive. Here, we show that Panx functions together with a germline specific paralogue of a nuclear export factor, dNxf2, and its cofactor dNxt1 (p15) as a ternary complex to suppress transposon expression. more...
Organism:
Drosophila melanogaster
Type:
Other
Platform:
GPL23702
4 Samples
Download data: BIGWIG
Series
Accession:
GSE130041
ID:
200130041
5.

A Pandas complex adapted for piRNA-guided transposon silencing (RNA-seq)

(Submitter supplied) The repression of transposons by the Piwi-interacting RNA (piRNA) pathway is essential to protect animal germ cells. In Drosophila ovaries, Panoramix (Panx) enforces transcriptional silencing by binding to the target-engaged Piwi-piRNA complex, although the precise mechanisms by which this occur remain elusive. Here, we show that Panx functions together with a germline specific paralogue of a nuclear export factor, dNxf2, and its cofactor dNxt1 (p15) as a ternary complex to suppress transposon expression. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL23702 GPL17275
12 Samples
Download data: BIGWIG, TXT
Series
Accession:
GSE121158
ID:
200121158
6.

Natural variation of piRNA expression affects immunity to transposable elements

(Submitter supplied) In the Drosophila germline, transposable elements (TEs) are silenced by PIWI-interacting RNA (piRNA) that originate from distinct genomic regions termed piRNA clusters and are processed by PIWI-subfamily Argonaute proteins. Here, we explore the variation in the ability to restrain an alien TE in different Drosophila strains. The I-element is a retrotransposon involved in the phenomenon of I-R hybrid dysgenesis in Drosophila melanogaster. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL13304
7 Samples
Download data: TXT
Series
Accession:
GSE83316
ID:
200083316
7.

The Integrity of piRNA Clusters is Abolished by Insulators in the Drosophila Germline

(Submitter supplied) Piwi-interacting RNAs (piRNAs) control transposable element (TE) activity in the germline. piRNAs are produced from single-stranded precursors transcribed from distinct genomic loci, enriched by TE fragments and termed piRNA clusters. The specific chromatin organization and transcriptional regulation of Drosophila germline-specific piRNA clusters ensure transcription and processing of piRNA precursors. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL13304 GPL25244
6 Samples
Download data: TXT
Series
Accession:
GSE125173
ID:
200125173
8.

piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire

(Submitter supplied) PIWI-clade Argonaute proteins silence transposon expression in animal gonads. Their target specificity is defined by bound ~23-30nt piRNAs that are processed from single-stranded precursor transcripts via two distinct pathways. Primary piRNAs are defined by the endo-nuclease Zucchini, while biogenesis of secondary piRNAs depends on piRNA-guided transcript cleavage and results in piRNA amplification. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platform:
GPL13304
46 Samples
Download data: BW, TXT
Series
Accession:
GSE71775
ID:
200071775
9.

Piwi is required during Drosophila embryogenesis to license dual-strand piRNA clusters for transposon repression in adult ovaries

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL19132 GPL13304 GPL17275
19 Samples
Download data: BW, TXT
Series
Accession:
GSE83238
ID:
200083238
10.

Piwi is required during Drosophila embryogenesis to license dual-strand piRNA clusters for transposon repression in adult ovaries [smallRNA-seq]

(Submitter supplied) Most piRNAs in the Drosophila female germline are transcribed from heterochromatic regions called dual-strand piRNA clusters. Histone 3 lysine 9 trimethylation (H3K9me3) is required for licensing piRNA production by these clusters. However, it is unclear when and how they acquire this permissive heterochromatic state. Although it has been suggested that piRNA cluster licensing is Piwi-independent, here we show that transient Piwi depletion in Drosophila embryos, using a refined knock-down system, results in H3K9me3 decrease at piRNA clusters. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL13304 GPL17275
5 Samples
Download data: TXT
Series
Accession:
GSE83236
ID:
200083236
11.

Piwi is required during Drosophila embryogenesis to license dual-strand piRNA clusters for transposon repression in adult ovaries [RNA-seq]

(Submitter supplied) Most piRNAs in the Drosophila female germline are transcribed from heterochromatic regions called dual-strand piRNA clusters. Histone 3 lysine 9 trimethylation (H3K9me3) is required for licensing piRNA production by these clusters. However, it is unclear when and how they acquire this permissive heterochromatic state. Although it has been suggested that piRNA cluster licensing is Piwi-independent, here we show that transient Piwi depletion in Drosophila embryos, using a refined knock-down system, results in H3K9me3 decrease at piRNA clusters. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19132
4 Samples
Download data: TXT
Series
Accession:
GSE83235
ID:
200083235
12.

Piwi is required during Drosophila embryogenesis to license dual-strand piRNA clusters for transposon repression in adult ovaries [ChIP-seq]

(Submitter supplied) Most piRNAs in the Drosophila female germline are transcribed from heterochromatic regions called dual-strand piRNA clusters. Histone 3 lysine 9 trimethylation (H3K9me3) is required for licensing piRNA production by these clusters. However, it is unclear when and how they acquire this permissive heterochromatic state. Although it has been suggested that piRNA cluster licensing is Piwi-independent, here we show that transient Piwi depletion in Drosophila embryos, using a refined knock-down system, results in H3K9me3 decrease at piRNA clusters. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17275
10 Samples
Download data: BW
Series
Accession:
GSE83234
ID:
200083234
13.

Panoramix enforces piRNA-dependent co-transcriptional silencing

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Other; Genome binding/occupancy profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL13304 GPL16479
59 Samples
Download data
Series
Accession:
GSE71374
ID:
200071374
14.

Panoramix enforces piRNA-dependent co-transcriptional silencing (small RNA-Seq)

(Submitter supplied) The Piwi-interacting RNA (piRNA) pathway is a small RNA-based innate immune system that defends germ cell genomes against transposons. In Drosophila ovaries, the nuclear Piwi protein is required for transcriptional silencing of transposons, though the precise mechanisms by which this occurs are unknown. Here we show that CG9754 is a component of Piwi complexes that functions downstream of Piwi and its binding partner, Asterix, in transcriptional silencing. more...
Organism:
Drosophila melanogaster
Type:
Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL13304 GPL16479
8 Samples
Download data: XLSX
Series
Accession:
GSE71372
ID:
200071372
15.

Panoramix enforces piRNA-dependent co-transcriptional silencing (RNA-Seq)

(Submitter supplied) The Piwi-interacting RNA (piRNA) pathway is a small RNA-based innate immune system that defends germ cell genomes against transposons. In Drosophila ovaries, the nuclear Piwi protein is required for transcriptional silencing of transposons, though the precise mechanisms by which this occurs are unknown. Here we show that CG9754 is a component of Piwi complexes that functions downstream of Piwi and its binding partner, Asterix, in transcriptional silencing. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL13304 GPL16479
24 Samples
Download data: XLSX
Series
Accession:
GSE71371
ID:
200071371
16.

Panoramix enforces piRNA-dependent co-transcriptional silencing (GRO-Seq)

(Submitter supplied) The Piwi-interacting RNA (piRNA) pathway is a small RNA-based innate immune system that defends germ cell genomes against transposons. In Drosophila ovaries, the nuclear Piwi protein is required for transcriptional silencing of transposons, though the precise mechanisms by which this occurs are unknown. Here we show that CG9754 is a component of Piwi complexes that functions downstream of Piwi and its binding partner, Asterix, in transcriptional silencing. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Other
Platforms:
GPL13304 GPL16479
10 Samples
Download data: XLSX
Series
Accession:
GSE71369
ID:
200071369
17.

Panoramix enforces piRNA-dependent co-transcriptional silencing (ChIP-Seq)

(Submitter supplied) The Piwi-interacting RNA (piRNA) pathway is a small RNA-based innate immune system that defends germ cell genomes against transposons. In Drosophila ovaries, the nuclear Piwi protein is required for transcriptional silencing of transposons, though the precise mechanisms by which this occurs are unknown. Here we show that CG9754 is a component of Piwi complexes that functions downstream of Piwi and its binding partner, Asterix, in transcriptional silencing. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL13304 GPL16479
17 Samples
Download data: XLSX
Series
Accession:
GSE71368
ID:
200071368
18.

Co-chaperone Hop/dSTIP1 is required for piRNA biogenesis and transposon silencing

(Submitter supplied) piRNAs are 26-30nt germ-line specific small non-coding RNAs that have evolutionarily conserved function in mobile genetic element silencing and maintenance of genome integrity. It has been shown that Drosophila Hsp70/90 Organizing Protein Homolog (Hop) – a co-chaperone interacts with piRNA binding protein Piwi and mediates silencing of phenotypic variations. However, it is not known if Hop has a direct role in piRNA biogenesis and transposon silencing. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platform:
GPL17275
6 Samples
Download data: TXT
Series
Accession:
GSE93934
ID:
200093934
19.

Maternally inherited piRNAs direct transient heterochromatin formation at active transposons during early Drosophila embryogenesis

(Submitter supplied) The piRNA pathway controls transposon expression in animal germ cells, thereby ensuring genome stability over generations. piRNAs are maternally deposited and required for proper transposon silencing in adult offspring. However, a long-standing question in the field is the precise function of maternally deposited piRNAs and its associated factors during embryogenesis. Here, we probe the spatio-temporal expression patterns of several piRNA pathway components during early stages of development. more...
Organism:
Drosophila melanogaster
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing; Other
Platform:
GPL21306
62 Samples
Download data: BED, BW
Series
Accession:
GSE160778
ID:
200160778
20.

Somatic piRNA pathway prevents transgenerational germline transposition

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Drosophila melanogaster
Type:
Other; Expression profiling by high throughput sequencing
Platforms:
GPL16479 GPL13304 GPL17275
28 Samples
Download data: BED, TXT
Series
Accession:
GSE112972
ID:
200112972
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=6|qty=2|blobid=MCID_671f65743b96c1239014cf04|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center