U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 13

1.

Direct reprogramming of fibroblasts identifies signatures of vascular dysfunction in physiological aging and Hutchinson-Gilford Progeria Syndrome

(Submitter supplied) Our goal was to identify gene expression and functional differences between directly reprogrammed vascular cells derived from young and old individuals, as wells as from healthy and Hutchinson-Gilford Progeria Syndrome (HGPS) donors. We provided a full characterization of reprogrammed endothelial and smooth muscle cells by comparing their gene expression with both the original fibroblasts and primary vascular cells, showing that reprogrammed cells express key vascular cell-identity genes and contribute to the formation of in vitro 3D vascular structures. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Third-party reanalysis
Platform:
GPL16791
45 Samples
Download data: XLSX
2.

Progeria-based vascular model identifies networks associated with cardiovascular aging and disease

(Submitter supplied) To model Hutchinson-Gilford Progeria syndrome (HGPS), we differentiated patient-derived induced pluripotent stem cells (iPSCs) to vascular smooth muscle cells (VSMCs). We then performed gene expression profiling analysis using data obtained from RNA-seq of the serially passaged cells at passage7 and passage 14.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL16791
16 Samples
Download data: TXT
Series
Accession:
GSE231761
ID:
200231761
3.

A human iPSC model of Hutchinson Gilford Progeria Syndrome reveals a possible mesenchymal stem cell defect

(Submitter supplied) Hutchinson Gilford Progeria Syndrome (HGPS) is a rare, sporadic genetic disease caused by mutations in the nuclear lamin A gene. In most cases the mutation creates an efficient donor-splice site that generates an altered transcript encoding a truncated lamin A protein, progerin. In vitro studies have indicated that progerin can disrupt nuclear function. HGPS affects mainly mesenchymal lineages but the shortage of patient material has precluded a tissue-wide molecular survey of progerin’s cellular impact. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL6883
23 Samples
Download data: TXT
Series
Accession:
GSE26093
ID:
200026093
4.

Reprogramming Hutchinson-Gilford Progeria Syndrome fibroblasts resets epigenomic landscape in patient-derived induced pluripotent stem cells [ChIP-Seq]

(Submitter supplied) Hutchinson-Gilford Progeria Syndrome (HGPS) is a segmental premature aging disorder caused by the accumulation of the truncated form of Lamin A known as Progerin within the nuclear lamina. Cellular hallmarks of HGPS include nuclear blebbing, loss of peripheral heterochromatin, defective epigenetic inheritance, altered gene expression, and senescence. To model HGPS using iPSCs, detailed genome-wide and structural analysis of the epigenetic landscape is required to assess the initiation and progression of the disease.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL10999
16 Samples
Download data: BED, TXT
Series
Accession:
GSE84356
ID:
200084356
5.

Recapitulation of human premature aging by using iPSCs from Hutchinson-Gilford progeria syndrome

(Submitter supplied) Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal human premature aging disease1-5, characterized by premature atherosclerosis and degeneration of vascular smooth muscle cells (SMCs)6-8. HGPS is caused by a single-point mutation in the LMNA gene, resulting in the generation of progerin, a truncated mutant of lamin A. Accumulation of progerin leads to various aging-associated nuclear defects including disorganization of nuclear lamina and loss of heterochromatin9-12. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Dataset:
GDS3892
Platform:
GPL570
10 Samples
Download data: CEL
Series
Accession:
GSE24487
ID:
200024487
6.
Full record GDS3892

Induced pluripotent stem cell-based accelerated aging model

Analysis of iPSCs generated from fibroblasts from patients with Hutchinson-Gilford progeria syndrome (HGPS), a rare and fatal premature aging disease. Premature aging was recapitulated by differentiation of the HGPS-iPSCs. Results provide insight into molecular mechanisms underlying premature aging.
Organism:
Homo sapiens
Type:
Expression profiling by array, transformed count, 3 cell line, 2 genotype/variation sets
Platform:
GPL570
Series:
GSE24487
10 Samples
Download data: CEL
7.

Lung endothelial cells (MLECs) from knock-in mouse model with or without the causative HGPS LmnaG609G mutation

(Submitter supplied) Vascular dysfunction is one of the typical characteristics of aging, but its contributing roles to systemic aging and the therapeutic potential is lacking experimental evidence. Accumulating data suggest that the mechanisms underlying aging are similar to those governing Hutchinson-Gilford progeria syndrome (HGPS), a premature aging disease, in which affected patients succumb to cardiovascular diseases (CVDs). more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
2 Samples
Download data: CLOUPE
Series
Accession:
GSE138975
ID:
200138975
8.

Arterial stiffness and cardiac dysfunction in Hutchinson-Gilford Progeria Syndrome corrected by inhibition of Lysyl Oxidase

(Submitter supplied) Purpose: Arterial stiffening is a hallmark of premature aging in Hutchinson-Gilford Progeria Syndrome (HGPS), but the molecular regulators remain unknown. Here, we show that the LMNAG609G mouse model of HGPS recapitulates the premature arterial stiffening seen in human HGPS. To gain a better understanding of potential stiffness-regulators in LMNAG609G mice, we performed RNA-sequencing analysis on cleaned descending aortas from 2- and 24-month WT and 2-month LMNAG609G mice on a C57BL6 background. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21103
18 Samples
Download data: TXT
Series
Accession:
GSE165409
ID:
200165409
9.

Comparison of Hutchinson–Gilford Progeria Syndrome fibroblast cell lines to control fibroblast cell lines

(Submitter supplied) Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic disease with widespread phenotypic features resembling premature aging. HGPS was recently shown to be caused by dominant mutations in the LMNA gene, resulting in the in-frame deletion of 50 amino acids near the carboxyl terminus of the encoded lamin A protein. Children with this disease typically succumb to myocardial infarction or stroke caused by severe atherosclerosis at an average age of 13 years. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Datasets:
GDS1503 GDS1504
Platforms:
GPL97 GPL96
36 Samples
Download data: CEL
Series
Accession:
GSE3860
ID:
200003860
10.
Full record GDS1504

Hutchinson-Gilford progeria syndrome: fibroblast (HG-U133B)

Expression profiling of three fibroblast cell lines derived from Hutchinson-Gilford progeria syndrome (HGPS) patients. Identified changes in gene expression may provide clues to potential risk factors or factors influencing disease progression.
Organism:
Homo sapiens
Type:
Expression profiling by array, count, 6 cell line, 2 disease state sets
Platform:
GPL97
Series:
GSE3860
18 Samples
Download data: CEL
DataSet
Accession:
GDS1504
ID:
1504
11.
Full record GDS1503

Hutchinson-Gilford progeria syndrome: fibroblast (HG-U133A)

Expression profiling of three fibroblast cell lines derived from Hutchinson-Gilford progeria syndrome (HGPS) patients. Identified changes in gene expression may provide clues to potential risk factors or factors influencing disease progression.
Organism:
Homo sapiens
Type:
Expression profiling by array, count, 6 cell line, 2 disease state sets
Platform:
GPL96
Series:
GSE3860
18 Samples
Download data: CEL
DataSet
Accession:
GDS1503
ID:
1503
12.

Age-dependent modulation the microvasculature by human microenvironment and serum

(Submitter supplied) The functional decline of the vascular niches is linked to several disorders, including neurodegeneration and bone loss. However, the causes of this decline are poorly understood. A key signature of aging is the progressive damage of the microvasculature, but a clear picture of its determinants and therapeutic targets in a human context is lacking. We designed/validated a novel approach based on long-living human microvascular networks to study the age-dependent modulation of the endothelium by microenvironment and serum. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL16791
25 Samples
Download data: XLSX
Series
Accession:
GSE121444
ID:
200121444
13.

BRD4 binding sites in transformed fibroblasts

(Submitter supplied) Analysis of BRD4 ChIP-seq data of two types of human transformed fibroblasts (WT and HGPS) to identify specific and common binding sites for BRD4. Transformed cell lines were obtained by retroviral introduction of TERT (T), V12-HRAS (R) and SV40 large and small T antigens (S) of primary skin fibroblasts for HGPS patients (TRS-HGPS) and age-matched control wild-type individuals (TRS-WT) Abstract: Advanced age and DNA damage accumulation are strong risk factors for cancer. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL11154
8 Samples
Download data: BED
Series
Accession:
GSE61325
ID:
200061325
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=18|qty=3|blobid=MCID_6734759705a7200ef873defd|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center