U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 17

1.

Endothelial and systemic upregulation of miR-34a-5p fine-tunes senescence in progeria

(Submitter supplied) Endothelial defects significantly contribute to cardiovascular pathology in the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). Using an endothelium-specific progeria mouse model, we identify a novel, endothelium-specific microRNA (miR) signature linked to the p53-senescence pathway and a senescence-associated secretory phenotype (SASP). Progerin-expressing endothelial cells exert profound cell-non-autonomous effects initiating senescence in non-endothelial cell populations and causing immune cell infiltrates around blood vessels. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platform:
GPL13112
36 Samples
Download data: XLSX
Series
Accession:
GSE272195
ID:
200272195
2.

Gene expression profile of HGPS skin fibroblasts upon treatment with JH4

(Submitter supplied) To gain further insight into the biological effects of JH4, we investigated its impact on gene expression profiles. We defined a set of genes such as IL33, BRCA1, BLM, Rad51, IL6, IL8, and TNFSF18 whose expression is restored by JH4 treatment
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL6244
4 Samples
Download data: CEL
Series
Accession:
GSE84147
ID:
200084147
3.

PML2-mediated thread-like nuclear bodies mark late senescence in Hutchinson–Gilford progeria syndrome

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL21290 GPL16791
20 Samples
Download data: BW, XLS
Series
Accession:
GSE137085
ID:
200137085
4.

PML2‐mediated thread‐like nuclear bodies mark late senescence in Hutchinson–Gilford progeria syndrome [ChIP-seq]

(Submitter supplied) Regular nuclear structure is critical for genome maintenance and proper gene expression, disorder of which has a causal role in aging. Accumulation of Progerin in Hutchinson-Gilford progeria syndrome (HGPS) disrupts the integrity of nuclear lamina and causes nuclear structure abnormalities, leading to premature aging. However, the nuclear structure/function relationships in HGPS cells have not been well addressed, and roles of nuclear sub-compartments for HGPS pathogenesis are rarely reported. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
2 Samples
Download data: BW
Series
Accession:
GSE137084
ID:
200137084
5.

PML2‐mediated thread‐like nuclear bodies mark late senescence in Hutchinson–Gilford progeria syndrome [RNA-seq]

(Submitter supplied) Regular nuclear structure is critical for genome maintenance and proper gene expression, disorder of which has a causal role in aging. Accumulation of Progerin in Hutchinson-Gilford progeria syndrome (HGPS) disrupts the integrity of nuclear lamina and causes nuclear structure abnormalities, leading to premature aging. However, the nuclear structure/function relationships in HGPS cells have not been well addressed, and roles of nuclear sub-compartments for HGPS pathogenesis are rarely reported. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21290
18 Samples
Download data: XLS
6.

Lung endothelial cells (MLECs) from knock-in mouse model with or without the causative HGPS LmnaG609G mutation

(Submitter supplied) Vascular dysfunction is one of the typical characteristics of aging, but its contributing roles to systemic aging and the therapeutic potential is lacking experimental evidence. Accumulating data suggest that the mechanisms underlying aging are similar to those governing Hutchinson-Gilford progeria syndrome (HGPS), a premature aging disease, in which affected patients succumb to cardiovascular diseases (CVDs). more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
2 Samples
Download data: CLOUPE
Series
Accession:
GSE138975
ID:
200138975
7.

Arterial stiffness and cardiac dysfunction in Hutchinson-Gilford Progeria Syndrome corrected by inhibition of Lysyl Oxidase

(Submitter supplied) Purpose: Arterial stiffening is a hallmark of premature aging in Hutchinson-Gilford Progeria Syndrome (HGPS), but the molecular regulators remain unknown. Here, we show that the LMNAG609G mouse model of HGPS recapitulates the premature arterial stiffening seen in human HGPS. To gain a better understanding of potential stiffness-regulators in LMNAG609G mice, we performed RNA-sequencing analysis on cleaned descending aortas from 2- and 24-month WT and 2-month LMNAG609G mice on a C57BL6 background. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21103
18 Samples
Download data: TXT
Series
Accession:
GSE165409
ID:
200165409
8.

Bone dysplasia in Hutchinson-Gilford Progeria Syndrome is associated with dysregulated differentiation and function of bone cell populations.

(Submitter supplied) Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature aging disorder that affects tissues of mesenchymal origin. Most individuals with HGPS harbor a de novo c.1824C>T (p.G608G) mutation in the gene encoding lamin A (LMNA), which activates a cryptic splice donor site resulting in production of a toxic protein termed “progerin”. Clinical manifestations include growth deficiency, lipodystrophy, sclerotic dermis, cardiovascular defects and bone dysplasia. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24247
23 Samples
Download data: TXT
Series
Accession:
GSE231305
ID:
200231305
9.

Quantitative whole transcriptomics sequencing of progeria-derived cells point to a key role of nucleotide metabolism in premature aging

(Submitter supplied) Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived PG and their healthy progenitor lines transcriptome profiling (RNA-seq) to proteomic methods (iTRAQ) and to evaluate these protocols for optimal high-throughput data analysis Methods: The raw RNA-Seq reads for each sample were aligned to the reference human genome browser (GRCh38.p12 assembly) using Bowtie2 and Tophat2. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18460
4 Samples
Download data: XLSX
10.

Reprogramming Hutchinson-Gilford Progeria Syndrome fibroblasts resets epigenomic landscape in patient-derived induced pluripotent stem cells [ChIP-Seq]

(Submitter supplied) Hutchinson-Gilford Progeria Syndrome (HGPS) is a segmental premature aging disorder caused by the accumulation of the truncated form of Lamin A known as Progerin within the nuclear lamina. Cellular hallmarks of HGPS include nuclear blebbing, loss of peripheral heterochromatin, defective epigenetic inheritance, altered gene expression, and senescence. To model HGPS using iPSCs, detailed genome-wide and structural analysis of the epigenetic landscape is required to assess the initiation and progression of the disease.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL10999
16 Samples
Download data: BED, TXT
Series
Accession:
GSE84356
ID:
200084356
11.

Epigenetic deregulation of lamina-associated domains in Hutchinson-Gilford Progeria Syndrome

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL20301 GPL11154
17 Samples
Download data
Series
Accession:
GSE150138
ID:
200150138
12.

Epigenetic deregulation of lamina-associated domains in Hutchinson-Gilford Progeria Syndrome (RNA-Seq)

(Submitter supplied) Hutchinson-Gilford Progeria Syndrome (HGPS) is a progeroid disease characterized by the early onset of some classically age-related phenotypes including arthritis, loss of body fat and hair and atherosclerosis. Cells from affected individuals express a mutant version of the nuclear envelope protein Lamin A (termed Progerin) and have previously been shown to exhibit prominent chromatin changes. Here, we identify epigenetic deregulation of lamina-associated domains (LADs) as a central feature in the molecular pathology of HGPS. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11154
9 Samples
Download data: TXT
13.

Epigenetic deregulation of lamina-associated domains in Hutchinson-Gilford Progeria Syndrome (ATAC-Seq)

(Submitter supplied) Hutchinson-Gilford Progeria Syndrome (HGPS) is a progeroid disease characterized by the early onset of some classically age-related phenotypes including arthritis, loss of body fat and hair and atherosclerosis. Cells from affected individuals express a mutant version of the nuclear envelope protein Lamin A (termed Progerin) and have previously been shown to exhibit prominent chromatin changes. Here, we identify epigenetic deregulation of lamina-associated domains (LADs) as a central feature in the molecular pathology of HGPS. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL20301
8 Samples
Download data: XLS
Series
Accession:
GSE150136
ID:
200150136
14.

Epigenetic deregulation of lamina-associated domains in Hutchinson-Gilford Progeria Syndrome

(Submitter supplied) Hutchinson-Gilford Progeria Syndrome (HGPS) is a progeroid disease characterized by the early onset of some classically age-related phenotypes including arthritis, loss of body fat and hair and atherosclerosis. Cells from affected individuals express a mutant version of the nuclear envelope protein Lamin A (termed Progerin) and have previously been shown to exhibit prominent chromatin changes. Here, we identify epigenetic deregulation of lamina-associated domains (LADs) as a central feature in the molecular pathology of HGPS. more...
Organism:
Homo sapiens
Type:
Methylation profiling by genome tiling array
Platform:
GPL23976
15 Samples
Download data: IDAT
Series
Accession:
GSE149960
ID:
200149960
15.

Recapitulation of human premature aging by using iPSCs from Hutchinson-Gilford progeria syndrome

(Submitter supplied) Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal human premature aging disease1-5, characterized by premature atherosclerosis and degeneration of vascular smooth muscle cells (SMCs)6-8. HGPS is caused by a single-point mutation in the LMNA gene, resulting in the generation of progerin, a truncated mutant of lamin A. Accumulation of progerin leads to various aging-associated nuclear defects including disorganization of nuclear lamina and loss of heterochromatin9-12. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Dataset:
GDS3892
Platform:
GPL570
10 Samples
Download data: CEL
Series
Accession:
GSE24487
ID:
200024487
16.
Full record GDS3892

Induced pluripotent stem cell-based accelerated aging model

Analysis of iPSCs generated from fibroblasts from patients with Hutchinson-Gilford progeria syndrome (HGPS), a rare and fatal premature aging disease. Premature aging was recapitulated by differentiation of the HGPS-iPSCs. Results provide insight into molecular mechanisms underlying premature aging.
Organism:
Homo sapiens
Type:
Expression profiling by array, transformed count, 3 cell line, 2 genotype/variation sets
Platform:
GPL570
Series:
GSE24487
10 Samples
Download data: CEL
17.

Aged vascular niche hinders osteogenesis of mesenchymal stem cells through paracrine repression of Wnt-axis

(Submitter supplied) Age-induced decline in osteogenic potential of bone marrow mesenchymal stem cells (BMSCs) potentiates osteoporosis and increases risk for bone fractures. Despite epidemiology studies reporting concurrent development of vascular- and bone diseases in the elderly, the underlying mechanisms for the vascular-bone cross-talk in aging are largely unknown. In this study, we show that accelerated endothelial aging deteriorates bone tissue through paracrine repression of Wnt-driven-axis in BMSCs. more...
Organism:
Homo sapiens
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL11154
6 Samples
Download data: CSV
Series
Accession:
GSE271848
ID:
200271848
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=9|qty=3|blobid=MCID_66d9a5b417e8137d4018eee9|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center