U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.
Full record GDS703

Dystrophin-deficient mdx extraocular and leg muscle

Analysis of extraocular (EOM) and hindlimb (gastrocnemius/soleus) muscle in mdx (dystrophin-deficient; Duchenne muscular dystrophy model) mice at postnatal day 56.5. Highly specific changes observed between dystrophic (leg) and spared (EOM) muscle.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 2 strain, 2 tissue sets
Platform:
GPL32
Series:
GSE1472
20 Samples
Download data: CEL
DataSet
Accession:
GDS703
ID:
703
2.

Extraocular and hindlimb muscle, comparison of wild type and mdx mice, 56 days (Porter lab)

(Submitter supplied) Determination of gene expression changes in extraocular and hindlimb (gastrocnemius/soleus) of mdx (dystrophin-deficient) mice at postnatal day 56. 5 independent replicates/muscle group/strain. Keywords: parallel sample
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS703
Platform:
GPL32
20 Samples
Download data: CEL
Series
Accession:
GSE1472
ID:
200001472
3.

Hindlimb muscle, comparison of wild type and mdx mice, 7 to 112 Day (Porter lab)

(Submitter supplied) Determination of gene expression changes in hindlimb muscle (gastrocnemius/soleus) of mdx (dystrophin-deficient) mice at postnatal ages 7, 14, 23, 28, 56, and 112. Keywords: time-course
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS639
Platform:
GPL81
36 Samples
Download data: CEL
Series
Accession:
GSE1025
ID:
200001025
4.

Extraocular muscle, comparison of wild type and mdx mice, 14 to 112 Days (Porter lab)

(Submitter supplied) Determination of gene expression changes in extraocular muscle of mdx (dystrophin-deficient) mice at postnatal ages 14, 28, 56, and 112 days. 3 independent replicates/age/strain. Keywords = microarray Keywords = muscle Keywords: time-course
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS614
Platform:
GPL81
24 Samples
Download data: CEL
Series
Accession:
GSE1008
ID:
200001008
5.
Full record GDS639

Dystrophin-deficient mdx hindlimb muscle development time course

Temporal analysis of hindlimb gastrocnemius/soleus muscle from dystrophin-deficient mdx mice, a Duchenne muscular dystrophy (DMD) model. Postnatal ages 7 to 112 days examined. Results provide insight into mechanisms of muscular dystrophy pathogenesis.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 6 age, 2 strain sets
Platform:
GPL81
Series:
GSE1025
36 Samples
Download data: CEL
DataSet
Accession:
GDS639
ID:
639
6.
Full record GDS614

Dystrophin-deficient mdx extraocular muscle development time course

Analysis of extraocular muscle (EOM) from dystrophin-deficient mdx mice, a Duchenne muscular dystrophy (DMD) model. Postnatal ages 14, 28, 56, and 112 days examined. EOM is unaffected in DMD, so results provide insight into mdx EOM protective mechanisms.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 4 age, 2 strain sets
Platform:
GPL81
Series:
GSE1008
24 Samples
Download data: CEL
DataSet
Accession:
GDS614
ID:
614
7.

Diaphram, comparison of wild type and mdx mice, 7 to 112 Days (Porter lab)

(Submitter supplied) Determination of gene expression changes in extraocular muscle of mdx (dystrophin-deficient) mice at postnatal ages 7, 14, 23, 28, 56, and 112 days. 3 independent replicates/age/strain. Data form part of publication: Human Molecular Genetics 13:257-269, 2004. Keywords = microarray Keywords = muscle Keywords: time-course
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS638
Platform:
GPL81
36 Samples
Download data: CEL
Series
Accession:
GSE1026
ID:
200001026
8.
Full record GDS638

Dystrophin-deficient mdx diaphram muscle development time course

Temporal analysis of diaphram muscle from dystrophin-deficient mdx mice, a Duchenne muscular dystrophy (DMD) model. Postnatal ages 7 to 112 days examined. Results provide insight into mechanisms of muscular dystrophy pathogenesis.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 6 age, 2 strain sets
Platform:
GPL81
Series:
GSE1026
36 Samples
Download data: CEL
DataSet
Accession:
GDS638
ID:
638
9.

Time-course of mdx and wild type mice

(Submitter supplied) Time-course microarray data set of mdx and wild type mice ranging from 1-20 weeks of age Keywords: time-course
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL485
36 Samples
Download data
Series
Accession:
GSE1574
ID:
200001574
10.

Extraocular, hindlimb, and cardiac muscles, comparison of dko and mdx mice (Porter lab)

(Submitter supplied) Comparison by expression profiling of tissue from dKO (utrophin/dystrophin-deficient) and MDX mice at 8 weeks of age. Independent triplicate analyses/strain were done for extraocular, hindlimb, and cardiac muscle. Keywords = microarray Keywords = extraocular Keywords: parallel sample
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS2001
Platform:
GPL81
18 Samples
Download data: CEL
Series
Accession:
GSE1463
ID:
200001463
11.
Full record GDS2001

Utrophin/dystrophin-deficient double mutant and dystrophin-deficient mdx mutant skeletal muscles

Comparison of skeletal muscles of utrophin/dystrophin double knockout (dko) mutants and dystrophin-deficient mdx mutants. dko and mdx mutants display skeletal muscle weakness and degeneration but only dko mutants display clinical features similar to Duchenne muscular dystrophy patients.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 2 genotype/variation, 3 tissue sets
Platform:
GPL81
Series:
GSE1463
18 Samples
Download data: CEL
DataSet
Accession:
GDS2001
ID:
2001
12.

Transcriptome analysis of Largemyd and Dmdmdx/Largemyd muscles in comparison to Dmdmdx: what make them different?

(Submitter supplied) Transcriptome analysis of hindlimb muscles from dystrophic mice Muscular dystrophies (MD) are a clinically and genetically heterogeneous group of mendelian diseases. The underlying pathophysiology and phenotypic variability in each form are much more complex, suggesting the involvement of many other genes. Thus, here we studied the whole genome expression profile in muscles from three mice models for MD, at different time points: Dmdmdx, carrying a mutation in dystrophin gene, Largemyd-/- with mutation in Large and Dmdmdx/Largemyd-/- bearing both mutations. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6246
60 Samples
Download data: CEL, CHP
Series
Accession:
GSE72151
ID:
200072151
13.

Molecular profiles (HG-U95A) of dystrophin-deficient and normal human muscle

(Submitter supplied) Molecular profiles of dystophin-deficient patients and normal human skeletal muscles on Affymetrix HG-U95A arrays Keywords = DMD Keywords = Duchenne muscular dystrophy Keywords = dystrophin Keywords = Affymetrix U95A array Keywords = skeletal muscle Keywords = gene expression profiles Keywords: other
Organism:
Homo sapiens
Type:
Expression profiling by array
Dataset:
GDS563
Platforms:
GPL8300 GPL91
24 Samples
Download data: CEL, EXP, RPT
Series
Accession:
GSE1004
ID:
200001004
14.
Full record GDS563

Duchenne muscular dystrophy (II) (HG-U95A)

Search for modifying factors and pathogenic pathways involved in Duchenne muscular dystrophy (DMD). Quadricep skeletal muscle biopsies from 12 DMD patients and 11 unaffected control patients examined.
Organism:
Homo sapiens
Type:
Expression profiling by array, count, 2 disease state sets
Platform:
GPL8300
Series:
GSE1004
23 Samples
Download data: CEL, EXP, RPT
15.

mRNA expression in regenerated mdx mouse skeletal muscle

(Submitter supplied) Despite over 3,000 articles published on dystrophin in the last 15 years, the reasons underlying the progression of the human disease, differential muscle involvement, and disparate phenotypes in different species are not understood. The present experiment employed a screen of 12,488 mRNAs in 16-wk-old mouse mdx muscle at a time when the skeletal muscle is avoiding severe dystrophic pathophysiology, despite the absence of a functional dystrophin protein. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS236
Platform:
GPL81
10 Samples
Download data: CEL
Series
Accession:
GSE466
ID:
200000466
16.
Full record GDS236

Dystrophin-deficient mdx muscle regeneration

Examination of mdx mouse, Duchenne muscular dystrophy model. 16 week regenerating mdx muscle analyzed in search for salvage pathways that maintain skeletal muscle integrity in the absence of functional dystrophin protein.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 2 strain sets
Platform:
GPL81
Series:
GSE466
10 Samples
Download data: CEL
DataSet
Accession:
GDS236
ID:
236
17.

Transcriptional analysis of skeletal muscles from wild type and mdx/mTR mice

(Submitter supplied) We report RNA sequencing data from tibialis anterior muscles of 4 month old male wild type C57Bl/6 mice and mdx/mTR mice (generated in the C57Bl/6 background), which lack the dystrophin and telomerase RNA component genes.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21103
12 Samples
Download data: TXT
Series
Accession:
GSE127929
ID:
200127929
18.

Effect of Estrogen Receptor Beta Ligand on Gene Expression in Liver

(Submitter supplied) C57BL/6 male mice were fed with normal diet or high fat diet and treated with vehicle or 30 mg/kg/day s.c. of ER-beta ligand, B-LGND2. Genes differentially expressed by H.F.D. and B-LGND2 are represented in this RNA-Sequencing data
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL16331
9 Samples
Download data: TSV
Series
Accession:
GSE93154
ID:
200093154
19.

effects of microbiome dysbiosis on murine dystrophic muscle

(Submitter supplied) Duchenne muscular dystrophy (DMD) is a progressive severe muscle-wasting disease caused by mutations in DMD encoding dystrophin that leads to loss of muscle function with cardiac/respiratory failure and premature death. Since dystrophic muscles are sensed by infiltrating inflammatory cells and gut microbial communities can cause immune dysregulation and metabolic syndrome, we sought to investigate whether intestinal bacteria may support the muscle immune response in mdx dystrophic animal model. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24247
20 Samples
Download data: TXT
Series
Accession:
GSE218370
ID:
200218370
20.

RNA-deep sequencing (RNA-Seq) analysis of dy2J/dy2J (Lama2-CMD mouse model), mdx (DMD mouse model) and Wild-type skeletal muscles

(Submitter supplied) Congenital muscular dystrophy type-1A (Lama2-CMD) and Duchenne Muscular dystrophy (DMD) result from deficiencies of laminin-α2 and dystrophin proteins, respectively. Although both proteins strengthen the sarcolemma, they are implicated in clinically distinct phenotypes. We used RNA-deep sequencing (RNA-Seq) of dy2J/dy2J, Lama2-CMD mouse model, skeletal muscle at 8 weeks of age to elucidate disease pathophysiology. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
8 Samples
Download data: XLS
Series
Accession:
GSE126416
ID:
200126416
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_6656fef3e795547e5fe3380e|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center