U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

The PTBP1-associated long noncoding RNA Pnky regulates embryonic and postnatal neural stem cells

(Submitter supplied) While thousands of long noncoding RNAs (lncRNAs) have been identified, few lncRNAs that control neural stem cell (NSC) behavior are known. Here, we identify Pinky (Pnky) as a novel, neural-specific lncRNA that regulates neurogenesis from NSCs in the embryonic and postnatal brain. In postnatal NSCs, Pnky knockdown potentiates neuronal lineage commitment and expands the transit-amplifying cell population, increasing neuron production several-fold. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
6 Samples
Download data: DIFF, TXT
Series
Accession:
GSE65542
ID:
200065542
2.

The long noncoding RNA Pnky is a trans-acting regulator of cortical development in vivo

(Submitter supplied)  While it is now appreciated that certain long noncoding in vivo, particularly with genetic strategies that establish cis versus trans mechanisms.  Pnky is a nuclear-enriched lncRNA that is transcribed divergently from the neighboring proneural transcription factor Pou3f2.  Here we show that conditional deletion of Pnky from the developing cortex regulates the production of projection neurons from neural stem cells (NSCs) in a cell-autonomous manner, altering postnatal cortical lamination.  Surprisingly, Pou3f2 expression is not disrupted by deletion of the entire Pnky gene.  Moreover, expression of Pnky from a BAC transgene rescues the differential gene expression and increased neurogenesis of Pnky-knockout NSCs, as well as the developmental phenotypes of Pnky-deletion in vivo.  Thus, despite being transcribed divergently from a key developmental transcription factor, the lncRNA Pnky regulates development in trans.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21103
24 Samples
Download data: H5, TXT
Series
Accession:
GSE127987
ID:
200127987
3.

The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Other
Platform:
GPL13112
30 Samples
Download data: BED, TXT
Series
Accession:
GSE71179
ID:
200071179
4.

Ptpb1 iCLIP in 46C mESCs and mNPCs

(Submitter supplied) PTBP1 and PTBP2 control alternative splicing programs during neuronal development, but the cellular functions of most PTBP1/2-regulated isoforms remain unknown. We show that PTBP1 guides developmental gene expression by regulating the transcription factor Pbx1. We identify exons that are differentially spliced when mouse embryonic stem cells (ESCs) differentiate into neuronal progenitor cells (NPCs) and neurons, and transition from PTBP1 to PTBP2 expression. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL13112
2 Samples
Download data: BED
Series
Accession:
GSE71178
ID:
200071178
5.

Splicing analyses of mESCs, mNPCs, and mMNs

(Submitter supplied) PTBP1 and PTBP2 control alternative splicing programs during neuronal development, but the cellular functions of most PTBP1/2-regulated isoforms remain unknown. We show that PTBP1 guides developmental gene expression by regulating the transcription factor Pbx1. We identify exons that are differentially spliced when mouse embryonic stem cells (ESCs) differentiate into neuronal progenitor cells (NPCs) and neurons, and transition from PTBP1 to PTBP2 expression. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL13112
3 Samples
Download data: TXT
Series
Accession:
GSE71079
ID:
200071079
6.

Splicing analyses of 46C mNPCs following PTBP depletion

(Submitter supplied) PTBP1 and PTBP2 control alternative splicing programs during neuronal development, but the cellular functions of most PTBP1/2-regulated isoforms remain unknown. We show that PTBP1 guides developmental gene expression by regulating the transcription factor Pbx1. We identify exons that are differentially spliced when mouse embryonic stem cells (ESCs) differentiate into neuronal progenitor cells (NPCs) and neurons, and transition from PTBP1 to PTBP2 expression. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL13112
8 Samples
Download data: TXT
Series
Accession:
GSE70985
ID:
200070985
7.

Gene expression analyses of HB9-GFP D2 mMN cultures following Pbx1 exon 7 inclusion

(Submitter supplied) PTBP1 and PTBP2 control alternative splicing programs during neuronal development, but the cellular functions of most PTBP1/2-regulated isoforms remain unknown. We show that PTBP1 guides developmental gene expression by regulating the transcription factor Pbx1. We identify exons that are differentially spliced when mouse embryonic stem cells (ESCs) differentiate into neuronal progenitor cells (NPCs) and neurons, and transition from PTBP1 to PTBP2 expression. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
8 Samples
Download data: FPKM_TRACKING
Series
Accession:
GSE70883
ID:
200070883
8.

An Alternative Splicing Event Amplifies Evolutionary Differences Between Vertebrates

(Submitter supplied) Alternative splicing (AS) generates extensive transcriptomic and proteomic complexity. However, the functions of species- and lineage-specific splice variants are largely unknown. Here, we show that mammalian-specific skipping of exon 9 of PTBP1 alters its splicing regulatory activities and affects the inclusion levels of numerous exons. During neurogenesis, skipping of exon 9 reduces PTBP1 repressive activity so as to facilitate activation of a brain-specific AS program. more...
Organism:
Gallus gallus; Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL16791 GPL19005
14 Samples
Download data: TAB
Series
Accession:
GSE69656
ID:
200069656
9.

Cell type-specific alternative splicing of cytoskeletal domains governs cell fate in the developing cerebral cortex

(Submitter supplied) Alternative splicing regulates over 90% of multiexon mammlian genes, but its role in specifying neural progenitor cell (NPC) fates has not been explored. Our analyses of purified mouse NPCs and neurons from developing cerebral cortices revealed hundreds of conserved and differentially spliced exons that add or remove key protein domains, especially in genes regulating the cytoskeleton.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
4 Samples
Download data: FPKM_TRACKING
Series
Accession:
GSE76198
ID:
200076198
10.

Ptbp2 represses adult-specific splicing to regulate the generation of neuronal precursors in the embryonic brain

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Other; Expression profiling by array
Platforms:
GPL11002 GPL6193 GPL8940
22 Samples
Download data: CEL
Series
Accession:
GSE47567
ID:
200047567
11.

Wild type vs. Ptbp2 KO mouse embryonic cortex RNA

(Submitter supplied) To assess the requirement of Ptbp2 for alternative processing of RNA in mouse brain
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL8940
6 Samples
Download data: CEL
Series
Accession:
GSE47566
ID:
200047566
12.

Wild type vs. Ptbp2 KO mouse E18.5 cortex RNA

(Submitter supplied) To assess the requirement of Ptbp2 for alternative mRNA expression in mouse brain
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6193
8 Samples
Download data: CEL
Series
Accession:
GSE47565
ID:
200047565
13.

Ptbp2 represses adult-specific splicing to regulate the generation of neuronal precursors in the embryonic brain [HITS-CLIP]

(Submitter supplied) Two polypyrimidine tract RNA-binding proteins (PTBs), one near-ubiquitously expressed (Ptbp1) and another highly tissue-restricted (Ptbp2), regulate RNA in interrelated but incompletely understood ways. Ptbp1, a splicing regulator, is replaced in the brain and differentiated neuronal cell lines by Ptbp2. To define the roles of Ptbp2 in the nervous system, we generated two independent Ptbp2-null strains, unexpectedly revealing that Ptbp2 is expressed in neuronal progenitors and is essential for postnatal survival. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL11002
8 Samples
Download data: BED, WIG
Series
Accession:
GSE47564
ID:
200047564
14.

The MicroRNA miR-124 Promotes Neuronal Differentiation by Triggering Brain-Specific Alternative Pre-mRNA Splicing

(Submitter supplied) Both microRNAs and alternative pre-mRNA splicing have been implicated in the development of the nervous system (NS), but functional interactions between these two pathways are poorly understood. We demonstrate that the neuron-specific microRNA miR-124a directly targets PTBP1/PTB/hnRNPI mRNA, which encodes a global repressor of alternative pre-mRNA splicing in non-neuronal cells. Among the targets of PTBP1 is a critical cassette exon in the pre-mRNA of PTBP2/nPTB/brPTB, an NS-enriched PTBP1 homolog. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS2846
Platform:
GPL1261
6 Samples
Download data: CEL
Series
Accession:
GSE8498
ID:
200008498
15.
Full record GDS2846

MicroRNA miR-124 expression effect on neuronal cell line

Analysis of neuroblastoma CAD cells expressing neuron-specific microRNA miR-124. MicroRNAs have been implicated in the development of the nervous system (NS). Results provide insight into the function of miR-124 in neuronal cells.
Organism:
Mus musculus
Type:
Expression profiling by array, transformed count, 2 protocol sets
Platform:
GPL1261
Series:
GSE8498
6 Samples
Download data: CEL
16.

RNA Sequencing Facilitates Quantitative Analysis of differentially expressed genes during human erythroipoiesis

(Submitter supplied) Purpose: The goals of this study are to determine the differentially expreseed non-coding RNAs during human erythropoiesis Methods:gene expression profiling with cells on days 4,8,11,14 during erythroid differentiation, with two replicated using Illumina Genome Analyzer IIx. qRT–PCR validation was performed using TaqMan and SYBR Green assays. Conclusions: ncRNAs were differentially expressed during erythroid differentiation
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL10999
8 Samples
Download data: TXT
17.

Long Non-Coding RNA-Dependent Mechanism to Control Heme Biosynthesis and Erythrocyte Maturation

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL10999
16 Samples
Download data: TXT
Series
Accession:
GSE106567
ID:
200106567
18.

RNA Sequencing Facilitates Quantitative Analysis of differentially expressed genes after PTBP1 knockdown in human erythroid cells

(Submitter supplied) Purpose: The goals of this study are to determine possible downstream targets of PTBP1 on day8 of erythroid differentiation with or without PTBP1 knockdown. Methods:gene expression profiling with or without PTBP1 knockdown in differentiated erythroblasts at day8 were generated by deep sequencing, induplicate, using Illumina GAIIx.The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL10999
4 Samples
Download data: TXT
19.

RNA Sequencing Facilitates Quantitative Analysis of differentially expressed genes after UCA1 knockdown in human erythroid cells

(Submitter supplied) Purpose: The goals of this study are to determine possible downstream targets of UCA1 on day8 of erythroid differentiation with or without UCA1 knockdown. Methods:gene expression profiling with or without UCA1 knockdown in differentiated erythroblasts at day8 were generated by deep sequencing, induplicate, using Illumina GAIIx.The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL10999
4 Samples
Download data: TXT
20.

Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by array; Non-coding RNA profiling by array
4 related Platforms
32 Samples
Download data: BED, CALLS, PAIR, TSV
Series
Accession:
GSE45282
ID:
200045282
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=10|qty=4|blobid=MCID_670e6bc7475a635e853e30de|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center