U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Zfp281 Coordinates Opposite Functions of Tet1 and Tet2 for Alternative Pluripotent States [RNA-Seq]

(Submitter supplied) Pluripotent cell identity comprises a spectrum of cell states including naive and primed states, which are typified by mouse embryonic stem cells (ESCs) and epiblast-derived stem cells (EpiSCs), respectively. Here we define a pluripotent cell fate (PCF) gene signature based on RNA-seq analysis associated with naive and primed pluripotency acquisition, and identify Zfp281 as a key transcriptional regulator for primed pluripotency and also as a barrier to achieve the naive pluripotency of both mouse and human ESCs.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
14 Samples
Download data: TSV
Series
Accession:
GSE81044
ID:
200081044
2.

Zfp281 Coordinates Opposite Functions of Tet1 and Tet2 for Alternative Pluripotent States

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17021
16 Samples
Download data: BED, BEDGRAPH, TSV
Series
Accession:
GSE81045
ID:
200081045
3.

Zfp281 Coordinates Opposite Functions of Tet1 and Tet2 for Alternative Pluripotent States [ChIP-Seq]

(Submitter supplied) Pluripotent cell identity comprises a spectrum of cell states including naive and primed states, which are typified by mouse embryonic stem cells (ESCs) and epiblast-derived stem cells (EpiSCs), respectively. Here we define a pluripotent cell fate (PCF) gene signature based on RNA-seq analysis associated with naive and primed pluripotency acquisition, and identify Zfp281 as a key transcriptional regulator for primed pluripotency and also as a barrier to achieve the naive pluripotency of both mouse and human ESCs.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17021
2 Samples
Download data: BED, BEDGRAPH
Series
Accession:
GSE81042
ID:
200081042
4.

ZFP281 coordinates DNMT3 and TET1 in pluripotent state transitions [MapR (CUT&Run)]

(Submitter supplied) The progression and transition between the naïve, formative, and primed pluripotent states are accompanied by a sharp activation of the de novo DNA methyltransferases and the reorganization of transcriptional and epigenetic landscapes. Here we identified Zinc Finger Protein 281 (ZFP281) as an essential factor in the formative-to-primed pluripotent state transition. Using a knockout mouse model and a knockin degron cell system, we revealed that transcription of Dnmt3a/3b depends on the activity of ZFP281 in embryonic stem cells, epiblast-like cells, and epiblast stem cells. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL21103
20 Samples
Download data: BW
Series
Accession:
GSE247461
ID:
200247461
5.

ZFP281 coordinates DNMT3 and TET1 in pluripotent state transitions [STEM-seq]

(Submitter supplied) The progression and transition between the naïve, formative, and primed pluripotent states are accompanied by a sharp activation of the de novo DNA methyltransferases and the reorganization of transcriptional and epigenetic landscapes. Here we identified Zinc Finger Protein 281 (ZFP281) as an essential factor in the formative-to-primed pluripotent state transition. Using a knockout mouse model and a knockin degron cell system, we revealed that transcription of Dnmt3a/3b depends on the activity of ZFP281 in embryonic stem cells, epiblast-like cells, and epiblast stem cells. more...
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL17021
6 Samples
Download data: BW, TXT
Series
Accession:
GSE227093
ID:
200227093
6.

ZFP281 coordinates DNMT3 and TET1 in pluripotent state transitions

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL17021 GPL21103
81 Samples
Download data: BED, BW, TXT
Series
Accession:
GSE226042
ID:
200226042
7.

ZFP281 coordinates DNMT3 and TET1 in pluripotent state transitions [RNA-seq]

(Submitter supplied) The progression and transition between the naïve, formative, and primed pluripotent states are accompanied by a sharp activation of the de novo DNA methyltransferases and the reorganization of transcriptional and epigenetic landscapes. Here we identified Zinc Finger Protein 281 (ZFP281) as an essential factor in the formative-to-primed pluripotent state transition. Using a knockout mouse model and a knockin degron cell system, we revealed that transcription of Dnmt3a/3b depends on the activity of ZFP281 in embryonic stem cells, epiblast-like cells, and epiblast stem cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21103
22 Samples
Download data: TXT
Series
Accession:
GSE226041
ID:
200226041
8.

ZFP281 coordinates DNMT3 and TET1 in pluripotent state transitions [ChIP-seq]

(Submitter supplied) The progression and transition between the naïve, formative, and primed pluripotent states are accompanied by a sharp activation of the de novo DNA methyltransferases and the reorganization of transcriptional and epigenetic landscapes. Here we identified Zinc Finger Protein 281 (ZFP281) as an essential factor in the formative-to-primed pluripotent state transition. Using a knockout mouse model and a knockin degron cell system, we revealed that transcription of Dnmt3a/3b depends on the activity of ZFP281 in embryonic stem cells, epiblast-like cells, and epiblast stem cells. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL21103
33 Samples
Download data: BED, BW
Series
Accession:
GSE226040
ID:
200226040
9.

Rinf regulates pluripotency network and Tet enzymes in embryonic stem cells (ESCs)

(Submitter supplied) In this study: (1) We have mapped the genome wide binding distribution and enrichment of Rinf/CXXC5 at genes and regulatory regions in mouse ESCs by ChIP-seq using a specific antibody against Rinf. (2) We have examined the role of Rinf in regulation of ESC gene expression programs by performing transcriptomic analysis of Rinf wild type and knockout ESCs by RNA-seq to identify differentially expressed genes. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL17021 GPL19057
21 Samples
Download data: BW, TXT
Series
Accession:
GSE132025
ID:
200132025
10.

Temporal transcriptome and methylome analysis of differentiating mouse embryonic stem cells deficient for Zeb2

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Methylation profiling by high throughput sequencing
Platforms:
GPL17021 GPL13112
30 Samples
Download data
Series
Accession:
GSE75618
ID:
200075618
11.

Temporal DNA methylation analysis (RRBS) for differentiating mouse embryonic stem cells deficient for Zeb2

(Submitter supplied) In this study we performed temporal profiling of DNA methylation by RRBseq of differentiating mouse embryonic stem cells using an embryoid body protocol. Analysis at d0, d4 and d6 revealed that Zeb2 deficient mESC lose their initially acquired DNA methylation at d6.
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL17021
12 Samples
Download data: BEDGRAPH, XLSX
Series
Accession:
GSE75617
ID:
200075617
12.

Temporal transcriptome analysis of control and Zeb2 knockout mESC in pluripotency and in neural differentiation

(Submitter supplied) To capture the Zeb2-dependent transcriptional changes in early cell state/fate decisions we performed RNA-seq on Zeb2 control and Zeb2 knockout cells. We chose three stages, which correspond in control ESCs to the naive pluripotent state (d0; very low amounts of Zeb2 mRNA), multipotent progenitors (d4, low Zeb2 mRNA/protein) and early neural progenitors (d6, high Zeb2 mRNA/protein), respectively.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
18 Samples
Download data: TXT, XLSX
Series
Accession:
GSE75616
ID:
200075616
13.

Zfp281 orchestrates interconversion of pluripotent states by engaging Ehmt1 and Zic2

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL17021
76 Samples
Download data: WIG
Series
Accession:
GSE131017
ID:
200131017
14.

Zfp281 orchestrates interconversion of pluripotent states by engaging Ehmt1 and Zic2 (RNA-seq)

(Submitter supplied) Developmental cell fate specification is a unidirectional process that can be reverted in response to injury or experimental reprogramming. Whether differentiation and de-differentiation trajectories intersect mechanistically is unclear. Here, we performed comparative screening in lineage-related mouse naïve embryonic stem cells (ESCs) and primed epiblast stem cells (EpiSCs), and identified the constitutively expressed zinc finger transcription factor (TF) Zfp281 as a bi-directional regulator of cell state interconversion. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
28 Samples
Download data: CSV
Series
Accession:
GSE131015
ID:
200131015
15.

Zfp281 orchestrates interconversion of pluripotent states by engaging Ehmt1 and Zic2 (ChIP-seq)

(Submitter supplied) Developmental cell fate specification is a unidirectional process that can be reverted in response to injury or experimental reprogramming. Whether differentiation and de-differentiation trajectories intersect mechanistically is unclear. Here, we performed comparative screening in lineage-related mouse naïve embryonic stem cells (ESCs) and primed epiblast stem cells (EpiSCs), and identified the constitutively expressed zinc finger transcription factor (TF) Zfp281 as a bi-directional regulator of cell state interconversion. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17021
48 Samples
Download data: WIG
Series
Accession:
GSE131014
ID:
200131014
16.

PRDM14 drives OCT3/4 recruitment via active demethylation in the transition from primed to naïve pluripotency

(Submitter supplied) Primordial germ cells (PGCs) are specified from epiblast cells in mice. Genes associated with naïve pluripotency are transiently repressed in the transition from inner cell mass (ICM) to epiblast cells, followed by their upregulation soon after PGC specification. However, the molecular mechanisms underlying the reactivation of pluripotency genes are poorly characterized. Here, we exploited in vitro differentiation of epiblast-like cells (EpiLCs) from embryonic stem cells (ESCs) to elucidate the molecular and epigenetic functions of PR domain-containing 14 (PRDM14). more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL11180
6 Samples
Download data: CEL
Series
Accession:
GSE77622
ID:
200077622
17.

DNA-binding pluripotency factors and DNA demethylases can cooperate to maintain pluripotent stem cell identity even in the absence of Brd4

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17021
46 Samples
Download data: BW
Series
Accession:
GSE95642
ID:
200095642
18.

DNA-binding pluripotency factors and DNA demethylases can cooperate to maintain pluripotent stem cell identity even in the absence of Brd4 [RNA-seq]

(Submitter supplied) Histone acetylation and the acetyl-lysine reader Brd4 have recently been implicated in embryonic stem cell (ESC) proliferation and self-renewal. We found that naïve pluripotent ESCs exhibit increased incorporation of glucose-derived carbons onto acetylated histones and elevations in H3K9ac and Brd4 recruitment at pluripotency gene promoters. Surprisingly, both H3K9 acetyltransferases, GCN5 and PCAF, and Brd4 recruitment were dispensable for proliferation, self-renewal and pluripotency of naïve ESCs. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
12 Samples
Download data: TXT
Series
Accession:
GSE88760
ID:
200088760
19.

PRDM14 promotes active DNA demethylation through the Ten-eleven translocation (TET)–mediated base excision repair pathway in embryonic stem cells

(Submitter supplied) Ten-eleven translocation (TET) proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytsosine (5fC), and 5-carboxylcytosine (5caC). 5fC/5caC can be excised and repaired by the base excision repair (BER) pathway, implicating 5mC oxidation in active DNA demethylation. Genome-wide DNA methylation is erased in the transition from metastable states to ground state of embryonic stem cells (ESCs) and in migrating primordial germ cells (PGCs), while some resistant regions become demethylated only in gonadal PGCs. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL11180
4 Samples
Download data: CEL
Series
Accession:
GSE52598
ID:
200052598
20.

Coordination of germ-layer lineage choice by TET1 during primed pluripotency

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL17021 GPL21103
28 Samples
Download data
Series
Accession:
GSE144869
ID:
200144869
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=6|qty=2|blobid=MCID_67138d40c7d3ca20d5535735|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center