U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Regulation of DNA methylation landscape in human somatic cell reprogramming by miR-29 family (illumina 450K)

(Submitter supplied) Reprogramming to pluripotency after overexpression of OCT4, SOX2, KLF4 and MYC is accompanied by global genomic and epigenomic changes. Histone modification and DNA methylation states in iPSCs have been shown to be highly similar with embryonic stem cells (ESCs). However, epigenetic differences still exist between iPSCs and ESCs. In particular, aberrant DNA methylation states found in iPSCs are a major concern for using iPSCs in a clinical setting. more...
Organism:
Homo sapiens
Type:
Methylation profiling by array
Platform:
GPL13534
14 Samples
Download data: IDAT, TXT
Series
Accession:
GSE81790
ID:
200081790
2.

Regulation of DNA methylation landscape in human somatic cell reprogramming by miR-29 family

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Methylation profiling by array; Methylation profiling by high throughput sequencing
Platforms:
GPL13534 GPL11154
50 Samples
Download data: IDAT, WIG
Series
Accession:
GSE81794
ID:
200081794
3.

Regulation of DNA methylation landscape in human somatic cell reprogramming by miR-29 family (MeDIP-seq)

(Submitter supplied) Reprogramming to pluripotency after overexpression of OCT4, SOX2, KLF4 and MYC is accompanied by global genomic and epigenomic changes. Histone modification and DNA methylation states in iPSCs have been shown to be highly similar with embryonic stem cells (ESCs). However, epigenetic differences still exist between iPSCs and ESCs. In particular, aberrant DNA methylation states found in iPSCs are a major concern for using iPSCs in a clinical setting. more...
Organism:
Homo sapiens
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL11154
16 Samples
Download data: WIG
Series
Accession:
GSE81793
ID:
200081793
4.

Regulation of DNA methylation landscape in human somatic cell reprogramming by miR-29 family (RNA-seq)

(Submitter supplied) Reprogramming to pluripotency after overexpression of OCT4, SOX2, KLF4 and MYC is accompanied by global genomic and epigenomic changes. Histone modification and DNA methylation states in iPSCs have been shown to be highly similar with embryonic stem cells (ESCs). However, epigenetic differences still exist between iPSCs and ESCs. In particular, aberrant DNA methylation states found in iPSCs are a major concern for using iPSCs in a clinical setting. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11154
20 Samples
Download data: XLSX
5.

X Chromosome Dosage Influences DNA Methylation Dynamics During Reprogramming to Mouse iPSCs

(Submitter supplied) A dramatic difference in global DNA methylation between male and female cells characterizes mouse embryonic stem cells (ESCs), unlike somatic cells. We analyzed DNA methylation changes during reprogramming of male and female somatic cells and in resulting induced pluripotent stem cells (iPSCs). At an intermediate reprogramming stage, somatic and pluripotency enhancers are targeted for partial methylation and demethylation. more...
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL13112
13 Samples
Download data: TXT
Series
Accession:
GSE111042
ID:
200111042
6.

Genome-wide maps of Cbx3 in pluripotent mESC and pre-iPSCs

(Submitter supplied) We examined the locations of Cbx3 by chromatin immunoprecipitation in ESCs and pre-iPSCs
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
4 Samples
Download data: WIG
Series
Accession:
GSE44242
ID:
200044242
7.

Expression data from pre-iPSCs with a control, histone methyltransferase or Cbx3 (HP1g) knockdown

(Submitter supplied) Transition from a partially reprogrammed pre-iPSC state to iPSC state can be achieved by modulating levels of histone modifying enzymes or proteins that can bind to histone modifications We used microarrays to determine the gene expression profile of pre-iPSCs depleted for either 3 histone methyltransferases together or the HP1gamma protein
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
8 Samples
Download data: CEL
Series
Accession:
GSE44084
ID:
200044084
8.

UCSD Human Reference Epigenome Mapping Project

(Submitter supplied) The human embryonic stem cells (hESCs) are a unique model system for investigating the mechanisms of human development due to their ability to replicate indefinitely while retaining the capacity to differentiate into a host of functionally distinct cell types. In addition, these cells could be potentially used as therapeutic agents in regenerative medicine. Differentiation of hESCs involves selective activation or silencing of genes, a process controlled in part by the epigenetic state of the cell. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Methylation profiling by high throughput sequencing; Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
6 related Platforms
878 Samples
Download data: BAM, BED, WIG
9.

Molecular and Functional Resemblance of Terminally Differentiated Cells Derived from Isogenic Human iPSCs and Somatic Cell Nuclear Transfer Derived ESCs

(Submitter supplied) Here we performed genome-wide RNA-seq and Reduced Representation Bisulfite Sequencing (RRBS-seq) in isogenic human induced pluripotent stem cells (iPSCs) and somatic cell nuclear transfer-derived embryonic stem cells (nt-ESCs), genetically matched in vitro fertilization-derived ESCs (IVF-ESCs), and their respective differentiated cells (cardiomyocytes and endothelial cells). We generated the transcriptome and DNA methylome map in human pluripotent stem cells and their differentiated cells with single-nucleotide resolution. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Methylation profiling by high throughput sequencing
Platforms:
GPL17301 GPL16791
54 Samples
Download data: TXT
10.

Gene expression and 5hmC/5mC state in pluripotent and TSKM-iPS induction cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Methylation profiling by high throughput sequencing
Platforms:
GPL13112 GPL6246
15 Samples
Download data: BED, CEL
Series
Accession:
GSE39639
ID:
200039639
11.

Genome-wide maps of 5hmC/5mC state in pluripotent and (T-)iPS induction cells.

(Submitter supplied) We performed 5hmC/5mC DNA Immunoprecipitation followed high-throughput sequencing using the cell sample along the whole TSKM secondary reprogramming system. The TSKM 0D is the fibroblasts deried from TSKM-iPS mouse as the starting cells of the reprogramming.The intermediate cells is 3-days induced cells which are refered as TSKM 3D cells, and the final reprogrammed cells is the iPS cells with full pluripotency driven from this secondary system. more...
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL13112
6 Samples
Download data: BED
Series
Accession:
GSE39638
ID:
200039638
12.

Gene expression in pluripotent and TSKM-iPS induction cells.

(Submitter supplied) We found that Tet1 (T) can substitute Oct4 and initiates somatic cell reprogramming in combination with Sox2 (S), Klf4 (K) and c-Myc (M). Moreover, the TSKM secondary reprogramming can proceed rapidly with widespread accompanying increase of 5hmC and 5mC at TSS and ES-active regulation regions followed by 5mC-5hmC pattern switchand, and the activation of endogenous Oct4 and Nanog was Tet1 and 5hmC involved in this process. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6246
9 Samples
Download data: CEL
Series
Accession:
GSE39637
ID:
200039637
13.

5-hydroxymethylcytosine-mediated epigenetic modifications between iPSCs and hESCs

(Submitter supplied) Mammalian somatic cells can be directly reprogrammed into induced pluripotent stem cells (iPSCs) by introducing defined sets of transcription factors. Somatic cell reprogramming involves epigenomic reconfiguration, conferring iPSCs with characteristics similar to embryonic stem (ES) cells. Human ES cells contain 5-hydroxymethylcytosine (5hmC), which is generated though the oxidation of 5-methylcytosine (5mC) by the TET family of enzymes. more...
Organism:
Homo sapiens
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL11154
19 Samples
Download data: BED
Series
Accession:
GSE37050
ID:
200037050
14.

The H3K27 demethylase Utx facilitates somatic and germ cell epigenetic reprogramming to pluripotency

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL6246 GPL13112
34 Samples
Download data: BED, CEL
Series
Accession:
GSE37822
ID:
200037822
15.

The H3K27 demethylase Utx facilitates somatic and germ cell epigenetic reprogramming to pluripotency [ChIP-Seq]

(Submitter supplied) Pluripotency can be induced in somatic cells by ectopic expression of defined transcription factors, however the identity of epigenetic regulators driving the progression of cellular reprogramming requires further investigation. Here we uncover a non-redundant role for the JmjC-domain-containing protein histone H3 methylated Lys 27 (H3K27) demethylase Utx, as a critical regulator for the induction, but not for the maintenance, of primed and naïve pluripotency in mice and in humans. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
27 Samples
Download data: BED
Series
Accession:
GSE37821
ID:
200037821
16.

The H3K27 demethylase Utx facilitates somatic and germ cell epigenetic reprogramming to pluripotency [Affymetrix gene expression]

(Submitter supplied) Pluripotency can be induced in somatic cells by ectopic expression of defined transcription factors, however the identity of epigenetic regulators driving the progression of cellular reprogramming requires further investigation. Here we uncover a non-redundant role for the JmjC-domain-containing protein histone H3 methylated Lys 27 (H3K27) demethylase Utx, as a critical regulator for the induction, but not for the maintenance, of primed and naïve pluripotency in mice and in humans. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6246
7 Samples
Download data: CEL
Series
Accession:
GSE35775
ID:
200035775
17.

Conversion of genomic imprinting by reprogramming and re-differentiation

(Submitter supplied) We determined whether the changed imprinted genes are maintained or reverted to the parthenogenetic state when the reprogrammed cells are re-differentiated into specialized cell types. To address this question, we re-differentiated miPSCs into neural stem cells (miPS-NSCs) and compared them with biparental female NSCs (fNSCs) and parthenogenetic NSCs (pNSCs) large-scale gene expression analysis of miPS-NSCs, fNSCs, and pNSCs, using the Illumina gene expression array
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
8 Samples
Download data: TXT
Series
Accession:
GSE37541
ID:
200037541
18.

Transient naive reprogramming corrects hiPS cells functionally and epigenetically [scRNA-Seq]

(Submitter supplied) Cells undergo a major epigenome reconfiguration when reprogrammed to human induced pluripotent stem cells (hiPS cells). However, the epigenomes of hiPS cells and human embryonic stem (hES) cells differ significantly, which affects hiPS cell function. These differences include epigenetic memory and aberrations that emerge during reprogramming, for which the mechanisms remain unknown. Here we characterized the persistence and emergence of these epigenetic differences by performing genome-wide DNA methylation profiling throughout primed and naive reprogramming of human somatic cells to hiPS cells. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24676
2 Samples
Download data: H5, TAR
Series
Accession:
GSE246103
ID:
200246103
19.

Transient naive reprogramming corrects hiPS cells functionally and epigenetically [ONT DNA-seq]

(Submitter supplied) Cells undergo a major epigenome reconfiguration when reprogrammed to human induced pluripotent stem cells (hiPS cells). However, the epigenomes of hiPS cells and human embryonic stem (hES) cells differ significantly, which affects hiPS cell function. These differences include epigenetic memory and aberrations that emerge during reprogramming, for which the mechanisms remain unknown. Here we characterized the persistence and emergence of these epigenetic differences by performing genome-wide DNA methylation profiling throughout primed and naive reprogramming of human somatic cells to hiPS cells. more...
Organism:
Homo sapiens
Type:
Other
Platforms:
GPL26167 GPL24106
6 Samples
Download data: TAR
Series
Accession:
GSE239579
ID:
200239579
20.

Transient naive reprogramming corrects hiPS cells functionally and epigenetically [ATAC-seq]

(Submitter supplied) Cells undergo a major epigenome reconfiguration when reprogrammed to human induced pluripotent stem cells (hiPS cells). However, the epigenomes of hiPS cells and human embryonic stem (hES) cells differ significantly, which affects hiPS cell function. These differences include epigenetic memory and aberrations that emerge during reprogramming, for which the mechanisms remain unknown. Here we characterized the persistence and emergence of these epigenetic differences by performing genome-wide DNA methylation profiling throughout primed and naive reprogramming of human somatic cells to hiPS cells. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL24676
12 Samples
Download data: BIGWIG
Series
Accession:
GSE178779
ID:
200178779
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=13|qty=3|blobid=MCID_673521e9b31eac71f54459e7|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center