U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Quantitative whole transcriptomics sequencing of progeria-derived cells point to a key role of nucleotide metabolism in premature aging

(Submitter supplied) Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived PG and their healthy progenitor lines transcriptome profiling (RNA-seq) to proteomic methods (iTRAQ) and to evaluate these protocols for optimal high-throughput data analysis Methods: The raw RNA-Seq reads for each sample were aligned to the reference human genome browser (GRCh38.p12 assembly) using Bowtie2 and Tophat2. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18460
4 Samples
Download data: XLSX
2.

Comparison of Hutchinson–Gilford Progeria Syndrome fibroblast cell lines to control fibroblast cell lines

(Submitter supplied) Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic disease with widespread phenotypic features resembling premature aging. HGPS was recently shown to be caused by dominant mutations in the LMNA gene, resulting in the in-frame deletion of 50 amino acids near the carboxyl terminus of the encoded lamin A protein. Children with this disease typically succumb to myocardial infarction or stroke caused by severe atherosclerosis at an average age of 13 years. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Datasets:
GDS1503 GDS1504
Platforms:
GPL97 GPL96
36 Samples
Download data: CEL
Series
Accession:
GSE3860
ID:
200003860
3.
Full record GDS1504

Hutchinson-Gilford progeria syndrome: fibroblast (HG-U133B)

Expression profiling of three fibroblast cell lines derived from Hutchinson-Gilford progeria syndrome (HGPS) patients. Identified changes in gene expression may provide clues to potential risk factors or factors influencing disease progression.
Organism:
Homo sapiens
Type:
Expression profiling by array, count, 6 cell line, 2 disease state sets
Platform:
GPL97
Series:
GSE3860
18 Samples
Download data: CEL
DataSet
Accession:
GDS1504
ID:
1504
4.
Full record GDS1503

Hutchinson-Gilford progeria syndrome: fibroblast (HG-U133A)

Expression profiling of three fibroblast cell lines derived from Hutchinson-Gilford progeria syndrome (HGPS) patients. Identified changes in gene expression may provide clues to potential risk factors or factors influencing disease progression.
Organism:
Homo sapiens
Type:
Expression profiling by array, count, 6 cell line, 2 disease state sets
Platform:
GPL96
Series:
GSE3860
18 Samples
Download data: CEL
DataSet
Accession:
GDS1503
ID:
1503
5.

Epigenetic deregulation of lamina-associated domains in Hutchinson-Gilford Progeria Syndrome

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL20301 GPL11154
17 Samples
Download data
Series
Accession:
GSE150138
ID:
200150138
6.

Epigenetic deregulation of lamina-associated domains in Hutchinson-Gilford Progeria Syndrome (RNA-Seq)

(Submitter supplied) Hutchinson-Gilford Progeria Syndrome (HGPS) is a progeroid disease characterized by the early onset of some classically age-related phenotypes including arthritis, loss of body fat and hair and atherosclerosis. Cells from affected individuals express a mutant version of the nuclear envelope protein Lamin A (termed Progerin) and have previously been shown to exhibit prominent chromatin changes. Here, we identify epigenetic deregulation of lamina-associated domains (LADs) as a central feature in the molecular pathology of HGPS. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11154
9 Samples
Download data: TXT
7.

Epigenetic deregulation of lamina-associated domains in Hutchinson-Gilford Progeria Syndrome (ATAC-Seq)

(Submitter supplied) Hutchinson-Gilford Progeria Syndrome (HGPS) is a progeroid disease characterized by the early onset of some classically age-related phenotypes including arthritis, loss of body fat and hair and atherosclerosis. Cells from affected individuals express a mutant version of the nuclear envelope protein Lamin A (termed Progerin) and have previously been shown to exhibit prominent chromatin changes. Here, we identify epigenetic deregulation of lamina-associated domains (LADs) as a central feature in the molecular pathology of HGPS. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL20301
8 Samples
Download data: XLS
Series
Accession:
GSE150136
ID:
200150136
8.

Epigenetic deregulation of lamina-associated domains in Hutchinson-Gilford Progeria Syndrome

(Submitter supplied) Hutchinson-Gilford Progeria Syndrome (HGPS) is a progeroid disease characterized by the early onset of some classically age-related phenotypes including arthritis, loss of body fat and hair and atherosclerosis. Cells from affected individuals express a mutant version of the nuclear envelope protein Lamin A (termed Progerin) and have previously been shown to exhibit prominent chromatin changes. Here, we identify epigenetic deregulation of lamina-associated domains (LADs) as a central feature in the molecular pathology of HGPS. more...
Organism:
Homo sapiens
Type:
Methylation profiling by genome tiling array
Platform:
GPL23976
15 Samples
Download data: IDAT
Series
Accession:
GSE149960
ID:
200149960
9.

Bone dysplasia in Hutchinson-Gilford Progeria Syndrome is associated with dysregulated differentiation and function of bone cell populations.

(Submitter supplied) Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature aging disorder that affects tissues of mesenchymal origin. Most individuals with HGPS harbor a de novo c.1824C>T (p.G608G) mutation in the gene encoding lamin A (LMNA), which activates a cryptic splice donor site resulting in production of a toxic protein termed “progerin”. Clinical manifestations include growth deficiency, lipodystrophy, sclerotic dermis, cardiovascular defects and bone dysplasia. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24247
23 Samples
Download data: TXT
Series
Accession:
GSE231305
ID:
200231305
10.

Recapitulation of human premature aging by using iPSCs from Hutchinson-Gilford progeria syndrome

(Submitter supplied) Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal human premature aging disease1-5, characterized by premature atherosclerosis and degeneration of vascular smooth muscle cells (SMCs)6-8. HGPS is caused by a single-point mutation in the LMNA gene, resulting in the generation of progerin, a truncated mutant of lamin A. Accumulation of progerin leads to various aging-associated nuclear defects including disorganization of nuclear lamina and loss of heterochromatin9-12. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Dataset:
GDS3892
Platform:
GPL570
10 Samples
Download data: CEL
Series
Accession:
GSE24487
ID:
200024487
11.
Full record GDS3892

Induced pluripotent stem cell-based accelerated aging model

Analysis of iPSCs generated from fibroblasts from patients with Hutchinson-Gilford progeria syndrome (HGPS), a rare and fatal premature aging disease. Premature aging was recapitulated by differentiation of the HGPS-iPSCs. Results provide insight into molecular mechanisms underlying premature aging.
Organism:
Homo sapiens
Type:
Expression profiling by array, transformed count, 3 cell line, 2 genotype/variation sets
Platform:
GPL570
Series:
GSE24487
10 Samples
Download data: CEL
12.

Reprogramming Hutchinson-Gilford Progeria Syndrome fibroblasts resets epigenomic landscape in patient-derived induced pluripotent stem cells [ChIP-Seq]

(Submitter supplied) Hutchinson-Gilford Progeria Syndrome (HGPS) is a segmental premature aging disorder caused by the accumulation of the truncated form of Lamin A known as Progerin within the nuclear lamina. Cellular hallmarks of HGPS include nuclear blebbing, loss of peripheral heterochromatin, defective epigenetic inheritance, altered gene expression, and senescence. To model HGPS using iPSCs, detailed genome-wide and structural analysis of the epigenetic landscape is required to assess the initiation and progression of the disease.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL10999
16 Samples
Download data: BED, TXT
Series
Accession:
GSE84356
ID:
200084356
13.

PML2-mediated thread-like nuclear bodies mark late senescence in Hutchinson–Gilford progeria syndrome

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL21290 GPL16791
20 Samples
Download data: BW, XLS
Series
Accession:
GSE137085
ID:
200137085
14.

PML2‐mediated thread‐like nuclear bodies mark late senescence in Hutchinson–Gilford progeria syndrome [ChIP-seq]

(Submitter supplied) Regular nuclear structure is critical for genome maintenance and proper gene expression, disorder of which has a causal role in aging. Accumulation of Progerin in Hutchinson-Gilford progeria syndrome (HGPS) disrupts the integrity of nuclear lamina and causes nuclear structure abnormalities, leading to premature aging. However, the nuclear structure/function relationships in HGPS cells have not been well addressed, and roles of nuclear sub-compartments for HGPS pathogenesis are rarely reported. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
2 Samples
Download data: BW
Series
Accession:
GSE137084
ID:
200137084
15.

PML2‐mediated thread‐like nuclear bodies mark late senescence in Hutchinson–Gilford progeria syndrome [RNA-seq]

(Submitter supplied) Regular nuclear structure is critical for genome maintenance and proper gene expression, disorder of which has a causal role in aging. Accumulation of Progerin in Hutchinson-Gilford progeria syndrome (HGPS) disrupts the integrity of nuclear lamina and causes nuclear structure abnormalities, leading to premature aging. However, the nuclear structure/function relationships in HGPS cells have not been well addressed, and roles of nuclear sub-compartments for HGPS pathogenesis are rarely reported. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21290
18 Samples
Download data: XLS
16.

Endothelial and systemic upregulation of miR-34a-5p fine-tunes senescence in progeria

(Submitter supplied) Endothelial defects significantly contribute to cardiovascular pathology in the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). Using an endothelium-specific progeria mouse model, we identify a novel, endothelium-specific microRNA (miR) signature linked to the p53-senescence pathway and a senescence-associated secretory phenotype (SASP). Progerin-expressing endothelial cells exert profound cell-non-autonomous effects initiating senescence in non-endothelial cell populations and causing immune cell infiltrates around blood vessels. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platform:
GPL13112
36 Samples
Download data: XLSX
Series
Accession:
GSE272195
ID:
200272195
17.

Lmnadelta9 mouse gene expression study

(Submitter supplied) Lmnadelta9 mice derived in the C57bl6X129S3/J background have been identified as exhibiting a progeric phenotype. Using this mouse model we show that a truncated variant of Lamin A (Lmna∆9) causes the proliferative arrest of post-natal fibroblasts. Arrest is due to the cells inability to produce a functional extracellular matrix (ECM). We used microarrays to compare gene expression of adult primary fibroblasts from wildtype and Lmnadelta9 mice in order to understand whether the Lmnadelta9 adult MEF defective proliferation is due to alterations of specific signaling associated with ECM functions.
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS5235
Platform:
GPL1261
6 Samples
Download data: CEL
Series
Accession:
GSE23495
ID:
200023495
18.
Full record GDS5235

Lamin A exon 9 deletion effect on fibroblasts

Analysis of fibroblasts from mutants deleted for exon 9 of Lamin A (LMNA). Mutant deleted for exon 9 of LMNA is a model for the segmental premature aging disease Hutchinson-Gilford Progeria (HGPS). Results provide insight into the molecular etiology and pathology of HGPS.
Organism:
Mus musculus
Type:
Expression profiling by array, transformed count, 2 genotype/variation sets
Platform:
GPL1261
Series:
GSE23495
6 Samples
Download data: CEL
19.

BRD4 binding sites in transformed fibroblasts

(Submitter supplied) Analysis of BRD4 ChIP-seq data of two types of human transformed fibroblasts (WT and HGPS) to identify specific and common binding sites for BRD4. Transformed cell lines were obtained by retroviral introduction of TERT (T), V12-HRAS (R) and SV40 large and small T antigens (S) of primary skin fibroblasts for HGPS patients (TRS-HGPS) and age-matched control wild-type individuals (TRS-WT) Abstract: Advanced age and DNA damage accumulation are strong risk factors for cancer. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL11154
8 Samples
Download data: BED
Series
Accession:
GSE61325
ID:
200061325
20.

Expression data from transformed WT and HGPS cell lines, including HGPS cells after knock-down of BRD4

(Submitter supplied) Primary skin fibroblasts from a HGPS patient and an age-matched control wild-type individual were challenged in a standard transformation assay by retroviral introduction of TERT (T), V12-HRAS (R) and SV40 large and small T antigens (S). Knock-down of BRD4 in this TRS-HGPS cell line (TRS-HGPS-shBRD4) was achieved by retroviral introduction of independent shRNAs (shBRD4-1 to -3) Abstract: Advanced age and DNA damage accumulation are strong risk factors for cancer. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL15207
7 Samples
Download data: CEL, CHP
Series
Accession:
GSE60519
ID:
200060519
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=7|qty=3|blobid=MCID_66a88969d9f27b4562116d33|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center