U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

RNA-seq of Single-Cell Genotyping of Transcriptomes

(Submitter supplied) Somatic cancer driver mutations may result in distinctly diverging phenotypic outputs. Thus, a common driver lesion may result in cancer subtypes with distinct clinical presentations and outcomes. The diverging phenotypic outputs of mutations result from the superimposition of the mutations with distinct progenitor cell populations that have differing lineage potential. However, our ability to test this hypothesis has been challenged by currently available tools. more...
Organism:
Homo sapiens; Mus musculus
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL22245 GPL16791
12 Samples
Download data: MTX, TSV
Series
Accession:
GSE117824
ID:
200117824
2.

Single-Cell Genotyping of Transcriptomes

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens; Mus musculus
Type:
Expression profiling by high throughput sequencing; Other
Platforms:
GPL22245 GPL16791 GPL15520
28 Samples
Download data: MTX, TSV, TXT
Series
Accession:
GSE117826
ID:
200117826
3.

Amplicon of Single-Cell Genotyping of Transcriptomes

(Submitter supplied) Somatic cancer driver mutations may result in distinctly diverging phenotypic outputs. Thus, a common driver lesion may result in cancer subtypes with distinct clinical presentations and outcomes. The diverging phenotypic outputs of mutations result from the superimposition of the mutations with distinct progenitor cell populations that have differing lineage potential. However, our ability to test this hypothesis has been challenged by currently available tools. more...
Organism:
Homo sapiens; Mus musculus
Type:
Other
Platforms:
GPL16791 GPL15520 GPL22245
16 Samples
Download data: TXT
Series
Accession:
GSE117825
ID:
200117825
4.

Mapping genotypes to chromatin accessibility profiles in single cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Other; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL24676
55 Samples
Download data: CSV, MTX, TSV, TXT
Series
Accession:
GSE204912
ID:
200204912
5.

Mapping genotypes to chromatin accessibility profiles in single cells [Genotyping GoT-ChA amplicon]

(Submitter supplied) Processed scATAC-seq sequencing data from myelofibrosis patients and raw sequencing data from scATAC-seq cell mixing experiments
Organism:
Homo sapiens
Type:
Other
Platform:
GPL24676
27 Samples
Download data: CSV
Series
Accession:
GSE204911
ID:
200204911
6.

Mapping genotypes to chromatin accessibility profiles in single cells [scATAC-seq; Pt01-19;Pt-02 DOGMAseq]

(Submitter supplied) Processed scATAC-seq sequencing data from myelofibrosis patients and raw sequencing data from scATAC-seq cell mixing experiments
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL24676
28 Samples
Download data: CSV, MTX, TSV, TXT
Series
Accession:
GSE203251
ID:
200203251
7.

Physical interaction between mutant calreticulin and the thrombopoietin receptor is required for transformation of hematopoietic cells

(Submitter supplied) Somatic mutations in calreticulin (CALR) are present in approximately 40% of patients with myeloproliferative neoplasms (MPN). However, the mechanism by which mutant CALR is oncogenic is unknown. Here, we demonstrate that a megakaryocytic-specific MPN phenotype is induced when mutant CALR is over-expressed in mice and that the thrombopoietin receptor, MPL is required for mutant CALR driven transformation. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
12 Samples
Download data: TSV
Series
Accession:
GSE74890
ID:
200074890
8.

Calreticulin Ins5 and Del52 mutations impair unfolded protein and oxidative stress responses in K562 cells expressing CALR mutants.

(Submitter supplied) Somatic mutations of calreticulin (CALR) have been described in approximately 30-40% of JAK2 and MPL unmutated Essential Thrombocythemia and Primary Myelofibrosis patients. CALR is an endoplasmic reticulum (ER) chaperone responsible for proper protein folding and calcium retention. Recent data demonstrated that the TPO receptor (MPL) is essential for the development of CALR mutant-driven Myeloproliferative Neoplasms (MPNs). more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL570
18 Samples
Download data: CEL
Series
Accession:
GSE127250
ID:
200127250
9.

Gene expression profile (GEP) of K562 cells expressing wtCALR, CALRins5 and CALRdel52

(Submitter supplied) In this work, we compared gene expression profile (GEP) of K562 cells transduced with the retroviral vector LCALRins5IDN or LCALRdel52IDN with K562 cells transduced with LwtCALRIDN In order to unravel MPL-independent mechanisms underlying the effect of CALR mutations on MPN pathogenesis, we analysed the transcriptional changes induced by the CALRins5 or CALRdel52 overexpression in K562 cells, which lack MPL expression
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL13667
9 Samples
Download data: CEL
Series
Accession:
GSE114414
ID:
200114414
10.

CALR frameshift mutations accelerate maturation of megakaryocytes in MPN patient-derived iPS cells

(Submitter supplied) In this dataset, we compare the gene expression data of induced pluripotent stem (iPS) cell-derived CD61+ megakaryocytes carrying heterozygous or homozygous Calreticulin (CALR) ins5 mutations or the CALR wildtype gene.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18573
9 Samples
Download data: CSV
Series
Accession:
GSE182479
ID:
200182479
11.

CALR mutation-induced transcriptional changes in cord blood-derived hematopoietic stem and progenitor cells

(Submitter supplied) Recurrent mutations in calreticulin (CALR) are present in 70-80% of JAK2 unmutated myeloproliferative neoplasms (MPN). Current models of CALR mutant MPNs are mainly based on cancer cell lines with ectopic overexpression or transgenic mouse models with a lack of data for primary human hematopoietic stem and progenitor cells (HSPCs) with endogenous CALR expression. Thus, we developed a CRISPR/Cas9 and AAV6-mediated knock-in approach to introduce the two most common CALR mutations (52 bp deletion, DEL; 5 bp insertion, INS) at the endogenous gene locus in human cord blood-derived HSPCs. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21290
9 Samples
Download data: TSV
Series
Accession:
GSE195705
ID:
200195705
12.

Single-Cell Analyses Reveal Megakaryocyte-Biased Hematopoiesis in Myelofibrosis and Identify Mutant Clone-Specific Targets

(Submitter supplied) Myelofibrosis is a severe myeloproliferative neoplasm characterised by increased numbers of abnormal bone marrow megakaryocytes that induce fibrosis, destroying the hematopoietic microenvironment. To determine the cellular and molecular basis for aberrant megakaryopoiesis in myelofibrosis, we performed single-cell transcriptome profiling of 135,929 CD34+Lineage- hematopoietic stem/progenitor cells (HSPCs), single-cell proteomics, genomics and functional assays. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL24676 GPL16791
21 Samples
Download data: RDATA, TAR
Series
Accession:
GSE144568
ID:
200144568
13.

Deciphering cell states and genealogies of human hematopoiesis with single-cell multi-omics [Extended donors]

(Submitter supplied) The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived hematopoietic stem cells (HSCs). Perturbations to this process underlie a diverse set of diseases, but the clonal contributions to human hematopoiesis and how this changes with age remain incompletely understood. While recent insights have emerged from barcoding studies in model systems, simultaneous detection of cell states and phylogenies from natural barcodes in humans has been challenging, which has limited the ability to explore functional differences between HSC clones. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Other
Platform:
GPL24676
9 Samples
Download data: H5, RDS, TSV, TXT
Series
Accession:
GSE261078
ID:
200261078
14.

Deciphering cell states and genealogies of human hematopoiesis with single-cell multi-omics [Crispr_Mouse_Batch2]

(Submitter supplied) The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived hematopoietic stem cells (HSCs). Perturbations to this process underlie a diverse set of diseases, but the clonal contributions to human hematopoiesis and how this changes with age remain incompletely understood. While recent insights have emerged from barcoding studies in model systems, simultaneous detection of cell states and phylogenies from natural barcodes in humans has been challenging, which has limited the ability to explore functional differences between HSC clones. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL24247
4 Samples
Download data: H5, TAR, TSV
Series
Accession:
GSE259285
ID:
200259285
15.

Deciphering cell states and genealogies of human hematopoiesis with single-cell multi-omics [Crispr_Mouse_Batch1]

(Submitter supplied) The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived hematopoietic stem cells (HSCs). Perturbations to this process underlie a diverse set of diseases, but the clonal contributions to human hematopoiesis and how this changes with age remain incompletely understood. While recent insights have emerged from barcoding studies in model systems, simultaneous detection of cell states and phylogenies from natural barcodes in humans has been challenging, which has limited the ability to explore functional differences between HSC clones. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL24247
4 Samples
Download data: H5, TAR, TSV, TXT
Series
Accession:
GSE259284
ID:
200259284
16.

Deciphering cell states and genealogies of human hematopoiesis with single-cell multi-omics [Young2]

(Submitter supplied) The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived hematopoietic stem cells (HSCs). Perturbations to this process underlie a diverse set of diseases, but the clonal contributions to human hematopoiesis and how this changes with age remain incompletely understood. While recent insights have emerged from barcoding studies in model systems, simultaneous detection of cell states and phylogenies from natural barcodes in humans has been challenging, which has limited the ability to explore functional differences between HSC clones. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Other
Platform:
GPL24676
9 Samples
Download data: H5, MTX, TSV
Series
Accession:
GSE219248
ID:
200219248
17.

Deciphering cell states and genealogies of human hematopoiesis with single-cell multi-omics [Young1_T2]

(Submitter supplied) The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived hematopoietic stem cells (HSCs). Perturbations to this process underlie a diverse set of diseases, but the clonal contributions to human hematopoiesis and how this changes with age remain incompletely understood. While recent insights have emerged from barcoding studies in model systems, simultaneous detection of cell states and phylogenies from natural barcodes in humans has been challenging, which has limited the ability to explore functional differences between HSC clones. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Other
Platform:
GPL24676
9 Samples
Download data: H5, MTX, TSV
Series
Accession:
GSE219167
ID:
200219167
18.

Deciphering cell states and genealogies of human hematopoiesis with single-cell multi-omics [Young 1]

(Submitter supplied) The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived hematopoietic stem cells (HSCs). Perturbations to this process underlie a diverse set of diseases, but the clonal contributions to human hematopoiesis and how this changes with age remain incompletely understood. While recent insights have emerged from barcoding studies in model systems, simultaneous detection of cell states and phylogenies from natural barcodes in humans has been challenging, which has limited the ability to explore functional differences between HSC clones. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Other
Platform:
GPL24676
9 Samples
Download data: H5, MTX, TSV
Series
Accession:
GSE219106
ID:
200219106
19.

Deciphering cell states and genealogies of human hematopoiesis with single-cell multi-omics [Aged 2]

(Submitter supplied) The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived hematopoietic stem cells (HSCs). Perturbations to this process underlie a diverse set of diseases, but the clonal contributions to human hematopoiesis and how this changes with age remain incompletely understood. While recent insights have emerged from barcoding studies in model systems, simultaneous detection of cell states and phylogenies from natural barcodes in humans has been challenging, which has limited the ability to explore functional differences between HSC clones. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Other
Platform:
GPL24676
6 Samples
Download data: H5, MTX, TSV
Series
Accession:
GSE219057
ID:
200219057
20.

Deciphering cell states and genealogies of human hematopoiesis with single-cell multi-omics

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below. The main processed data are organized in the following two Figshare links: Seurat objects: https://doi.org/10.6084/m9.figshare.23290004 ReDeeM-V output: https://doi.org/10.6084/m9.figshare.24418966.v1
Organism:
Homo sapiens; Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Other
Platforms:
GPL24676 GPL24247
56 Samples
Download data: H5, RDS, TAR, TSV, TXT
Series
Accession:
GSE219015
ID:
200219015
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=7|qty=3|blobid=MCID_672dda759a2d0f71cf7486e1|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Support Center