U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 6

1.

Adaptation of Bacillus subtilis tat and S313 mutant cells to growth in Lysogeny Broth (LB) lacking NaCl

(Submitter supplied) In B. subtilis, the Tat secretion system is essential for effective growth in media lacking iron or NaCl, which is related to the Tat-dependent export of the heme peroxidase EfeB. In Lysogeny Broth (LB) without NaCl, tat mutant bacteria undergo cell lysis in the early exponential growth phase. Part of the population of mutant bacteria then adapts to the salt-deprived condition and resumes growth. The absence of sRNA S313, which has a predicted role in modulating the expression of the efeUOB operon, also leads to a lysis-recovery phenotype. more...
Organism:
Bacillus subtilis subsp. subtilis str. 168
Type:
Expression profiling by array
Platform:
GPL21669
15 Samples
Download data: TXT
Series
Accession:
GSE149595
ID:
200149595
2.

Transcriptomic and phenotypic analysis reveals new functions for the Tat pathway in Yersinia pseudotuberculosis

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Yersinia pseudotuberculosis IP 32953; Yersinia pseudotuberculosis
Type:
Expression profiling by array
Platform:
GPL15095
16 Samples
Download data: TAB, TXT
Series
Accession:
GSE80532
ID:
200080532
3.

Transcriptomic and phenotypic analysis reveals new functions for the Tat pathway in Yersinia pseudotuberculosis [dtatC-vs-ip_37C-stat]

(Submitter supplied) The Twin-arginine translocation (Tat) system promotes secretion of folded proteins that in bacteria are identified via an N-terminal signal peptide. Tat systems are associated with virulence in many bacterial pathogens and our previous studies revealed that Tat deficient Yersinia pseudotuberculosis was severely attenuated for virulence. However, in silico predictions did not reveal any obvious virulence factors among the potential Tat substrates encoded by Y. more...
Organism:
Yersinia pseudotuberculosis IP 32953; Yersinia pseudotuberculosis
Type:
Expression profiling by array
Platform:
GPL15095
4 Samples
Download data: TAB, TXT
Series
Accession:
GSE80531
ID:
200080531
4.

Transcriptomic and phenotypic analysis reveals new functions for the Tat pathway in Yersinia pseudotuberculosis [dtatC-vs-ip_37C-log]

(Submitter supplied) The Twin-arginine translocation (Tat) system promotes secretion of folded proteins that in bacteria are identified via an N-terminal signal peptide. Tat systems are associated with virulence in many bacterial pathogens and our previous studies revealed that Tat deficient Yersinia pseudotuberculosis was severely attenuated for virulence. However, in silico predictions did not reveal any obvious virulence factors among the potential Tat substrates encoded by Y. more...
Organism:
Yersinia pseudotuberculosis IP 32953; Yersinia pseudotuberculosis
Type:
Expression profiling by array
Platform:
GPL15095
4 Samples
Download data: TAB, TXT
Series
Accession:
GSE80530
ID:
200080530
5.

Transcriptomic and phenotypic analysis reveals new functions for the Tat pathway in Yersinia pseudotuberculosis [dtatC-vs-ip_26C-stat]

(Submitter supplied) The Twin-arginine translocation (Tat) system promotes secretion of folded proteins that in bacteria are identified via an N-terminal signal peptide. Tat systems are associated with virulence in many bacterial pathogens and our previous studies revealed that Tat deficient Yersinia pseudotuberculosis was severely attenuated for virulence. However, in silico predictions did not reveal any obvious virulence factors among the potential Tat substrates encoded by Y. more...
Organism:
Yersinia pseudotuberculosis IP 32953; Yersinia pseudotuberculosis
Type:
Expression profiling by array
Platform:
GPL15095
4 Samples
Download data: TAB, TXT
Series
Accession:
GSE80529
ID:
200080529
6.

Transcriptomic and phenotypic analysis reveals new functions for the Tat pathway in Yersinia pseudotuberculosis [dtatC-vs-ip_26C-log]

(Submitter supplied) The Twin-arginine translocation (Tat) system promotes secretion of folded proteins that in bacteria are identified via an N-terminal signal peptide. Tat systems are associated with virulence in many bacterial pathogens and our previous studies revealed that Tat deficient Yersinia pseudotuberculosis was severely attenuated for virulence. However, in silico predictions did not reveal any obvious virulence factors among the potential Tat substrates encoded by Y. more...
Organism:
Yersinia pseudotuberculosis; Yersinia pseudotuberculosis IP 32953
Type:
Expression profiling by array
Platform:
GPL15095
4 Samples
Download data: TAB, TXT
Series
Accession:
GSE80528
ID:
200080528
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=2|qty=4|blobid=MCID_672da9b99a2d0f71cf6c3988|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Support Center