U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.
Full record GDS4042

Transcription factor POU4F1 effect on fetal liver cells

Analysis of fetal liver cells expressing high, wildtype, or null levels of the POU domain-containing transcription factor POU4F1. Dysregulation of POU4F1 is a recurring abnormality in t(8;21) human acute myeloid leukemia (AML). Results provide insight into the role of POU4F1 in t(8;21) AML.
Organism:
Mus musculus
Type:
Expression profiling by array, transformed count, 2 agent, 2 genotype/variation sets
Platform:
GPL1261
Series:
GSE19997
9 Samples
Download data: CEL
2.

POU4F1 is associated with t(8;21) AML and contributes directly to its unique transcriptional signature

(Submitter supplied) POU4F1 is associated with t(8;21) acute myeloid leukemia (AML) and contributes directly to its unique transcriptional signature
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS4042
Platform:
GPL1261
9 Samples
Download data: CEL
Series
Accession:
GSE19997
ID:
200019997
3.

Methylated RNA immunoprecipitation sequencing in the Kasumi-1 cell line treated with CoCl2

(Submitter supplied) To evaluate the role of HIF1α in modulating the m6A abundance, we conducted m6A sequencing in the Kasumi-1 cell line treated with CoCl2, which could mediate the stabilization of HIF1α protein.
Organism:
Homo sapiens
Type:
Expression profiling by array; Expression profiling by high throughput sequencing
Platform:
GPL24676
12 Samples
Download data: TXT
Series
Accession:
GSE168778
ID:
200168778
4.

Epigenetic regulation of the apoptosis program in t(8;21) AMLs by an AML1-ETO, ERG and RUNX1 triad

(Submitter supplied) The t(8;21) acute myeloid leukemia associated oncoprotein AML1-ETO is a transcription factor that aberrantly regulates the pathways that lead to myeloid differentiation. Here, we set out to investigate the effects of AML1-ETO on gene expression and the epigenome in patient blast cells. We identify two modules, one in which AML1-ETO binds promoter regions of active genes and one represented by non-promoter binding to accessible, yet inactive chromatin regions. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL10999 GPL11154
16 Samples
Download data: WIG
Series
Accession:
GSE76464
ID:
200076464
5.

RUNX1-ETO orchestrates dynamic enhancer promoter communication in t(8;21) Acute Myeloid Leukaemia

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
8 Samples
Download data: WIG
Series
Accession:
GSE121282
ID:
200121282
6.

RUNX1-ETO orchestrates dynamic enhancer promoter communication in t(8;21) Acute Myeloid Leukaemia (DNaseI-Seq)

(Submitter supplied) Acute myeloid leukaemia (AML) is caused by mutations in transcriptional and epigenetic regulator genes impairing myeloid differentiation. The t(8;21)(q22;q22) translocation generates the leukemogenic RUNX1-ETO fusion protein which interferes with the hematopoietic master regulator RUNX1. We previously showed that maintenance of t(8;21) AML is dependent on RUNX1-ETO as its depletion causes extensive changes in transcription factor binding and gene expression as well as myeloid differentiation. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
4 Samples
Download data: WIG
Series
Accession:
GSE121281
ID:
200121281
7.

RUNX1-ETO orchestrates dynamic enhancer promoter communication in t(8;21) Acute Myeloid Leukaemia (ChIP-Seq)

(Submitter supplied) Acute myeloid leukaemia (AML) is caused by mutations in transcriptional and epigenetic regulator genes impairing myeloid differentiation. The t(8;21)(q22;q22) translocation generates the leukemogenic RUNX1-ETO fusion protein which interferes with the hematopoietic master regulator RUNX1. We previously showed that maintenance of t(8;21) AML is dependent on RUNX1-ETO as its depletion causes extensive changes in transcription factor binding and gene expression as well as myeloid differentiation. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
4 Samples
Download data: WIG
Series
Accession:
GSE121280
ID:
200121280
8.

Genome-wide studies identify a novel interplay between AML1 and AML1/ETO in t(8;21) acute myeloid leukemia

(Submitter supplied) The AML1/ETO fusion protein is essential to the development of acute myeloid leukemia (AML), and is well recognized for its dominant-negative effect on the co-existing wild-type protein AML1. However, the involvement of wild-type AML1 in AML1/ETO-driven leukemogenesis remains elusive. Through chromatin immunoprecipitation sequencing, computational analysis plus a series of experimental validations, we report here that AML1 is able to orchestrate the expression of AML1/ETO targets regardless of being activated or repressed, via forming a complex with AML1/ETO and via recruiting the cofactor.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9115
6 Samples
Download data: BED, BIGWIG
Series
Accession:
GSE65427
ID:
200065427
9.

Chromatin accessibility, p300 and histone acetylation define PML-RARalpha- and AML1-ETO-binding sites

(Submitter supplied) Chromatin accessibility is a key determinant of cell-type-specific gene expression. Here, we have investigated the chromatin architecture of different acute myeloid leukemia (AML) cells and the changes in accessibility when NB4 (APL) cells undergo the process of differentiation.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9052
25 Samples
Download data: BED, WIG
Series
Accession:
GSE30254
ID:
200030254
10.

Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding (Illumina expression)

(Submitter supplied) The t(8;21) translocation fuses the DNA binding domain of the hematopoietic master regulator RUNX1 to the ETO protein. The resultant RUNX1/ETO fusion protein is a leukemia-initiating transcription factor that interferes with RUNX1 function. The result of this interference is a block in differentiation and, finally, the development of acute myeloid leukemia (AML). To obtain insights into RUNX1/ETO-dependant alterations of the epigenetic landscape we measured genome-wide RUNX1- and RUNX1/ETO bound regions in t(8;21) cells and assessed to what extent the effects of RUNX1/ETO on the epigenome depend on its continued expression in established leukemic cells. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
10 Samples
Download data: TXT
Series
Accession:
GSE34594
ID:
200034594
11.

Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding (ChIP-seq)

(Submitter supplied) The t(8;21) translocation fuses the DNA binding domain of the hematopoietic master regulator RUNX1 to the ETO protein. The resultant RUNX1/ETO fusion protein is a leukemia-initiating transcription factor that interferes with RUNX1 function. The result of this interference is a block in differentiation and, finally, the development of acute myeloid leukemia (AML). To obtain insights into RUNX1/ETO-dependant alterations of the epigenetic landscape we measured genome-wide RUNX1- and RUNX1/ETO bound regions in t(8;21) cells and assessed to what extent the effects of RUNX1/ETO on the epigenome depend on its continued expression in established leukemic cells. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9052
6 Samples
Download data: TXT
Series
Accession:
GSE34540
ID:
200034540
12.

Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding

(Submitter supplied) The t(8;21) translocation fuses the DNA binding domain of the hematopoietic master regulator RUNX1 to the ETO protein. The resultant RUNX1/ETO fusion protein is a leukemia-initiating transcription factor that interferes with RUNX1 function. The result of this interference is a block in differentiation and, finally, the development of acute myeloid leukemia (AML). To obtain insights into RUNX1/ETO-dependant alterations of the epigenetic landscape we measured genome-wide RUNX1- and RUNX1/ETO bound regions in t(8;21) cells and assessed to what extent the effects of RUNX1/ETO on the epigenome depend on its continued expression in established leukemic cells. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by array; Methylation profiling by array
Platforms:
GPL9052 GPL10558
38 Samples
Download data: TXT
Series
Accession:
GSE29225
ID:
200029225
13.

Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding [expression array data]

(Submitter supplied) The t(8;21) translocation fuses the DNA binding domain of the hematopoietic master regulator RUNX1 to the ETO protein. The resultant RUNX1/ETO fusion protein is a leukemia-initiating transcription factor that interferes with RUNX1 function. The result of this interference is a block in differentiation and, finally, the development of acute myeloid leukemia (AML). To obtain insights into RUNX1/ETO-dependant alterations of the epigenetic landscape we measured genome-wide RUNX1- and RUNX1/ETO bound regions in t(8;21) cells and assessed to what extent the effects of RUNX1/ETO on the epigenome depend on its continued expression in established leukemic cells. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
8 Samples
Download data: TXT
Series
Accession:
GSE29223
ID:
200029223
14.

Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding [ChIP-Seq and DNAse-Hypersensitivity data]

(Submitter supplied) The t(8;21) translocation fuses the DNA binding domain of the hematopoietic master regulator RUNX1 to the ETO protein. The resultant RUNX1/ETO fusion protein is a leukemia-initiating transcription factor that interferes with RUNX1 function. The result of this interference is a block in differentiation and, finally, the development of acute myeloid leukemia (AML). To obtain insights into RUNX1/ETO-dependant alterations of the epigenetic landscape we measured genome-wide RUNX1- and RUNX1/ETO bound regions in t(8;21) cells and assessed to what extent the effects of RUNX1/ETO on the epigenome depend on its continued expression in established leukemic cells. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9052
14 Samples
Download data: TXT
Series
Accession:
GSE29222
ID:
200029222
15.

Genome-wide co-occupancy of AML1-ETO and N-CoR defines the t(8;21) AML signature in leukemic cells

(Submitter supplied) This study characterizes the genome-side occupancy of AML1, AML1-ETO and the cofactors N-CoR and p300 in leukemics cells (Kasumi-1) to discover novel regulatory mechanisms involving genes bound by the t(8:21) fusion protein AML1-ETO. A significant discovery of our study is the co-localization of AML1-ETO with the N-CoR co-repressor on genomic regions that are primarily distal to the transcriptional start sites (TSSs). more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9115
7 Samples
Download data: BED, BW
Series
Accession:
GSE62847
ID:
200062847
16.

caArray_stegm-00394: Broad: Identification of AML1-ETO modulators by chemical genomics

(Submitter supplied) Somatic rearrangements of transcription factors are common abnormalities in the acute leukemias. With rare exception, however, the resultant protein products have remained largely intractable as pharmacologic targets. One example is AML1-ETO, the most common translocation reported in acute myeloid leukemia (AML). To identify AML1-ETO modulators, we screened a small molecule library using a chemical genomic approach. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platforms:
GPL91 GPL96
30 Samples
Download data: CEL
Series
Accession:
GSE91002
ID:
200091002
17.

AML1-ETO induction and knockdown

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platforms:
GPL91 GPL96
30 Samples
Download data: CEL
Series
Accession:
GSE15648
ID:
200015648
18.

U937 AML1-ETO inducible samples

(Submitter supplied) U937 AML cells that express an inducible AML1-ETO construct under the control of the tetracycline promoter. Microarrays used to discover an AML1-ETO signature for a GE-HTS screen to identify AML1-ETO modulators.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL91
16 Samples
Download data: CEL
Series
Accession:
GSE15647
ID:
200015647
19.

Kasumi-1 AML1-ETO knockdown samples

(Submitter supplied) Kasumi-1 AML cells that were transfected in triplicate with AML1-ETO or luciferase siRNA constructs by either Amaxa nucleofection or Biorad siLentFect and incubated for 96 hours. Microarrays used to discover an AML1-ETO signature for a GE-HTS screen to identify AML1-ETO modulators.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL96
14 Samples
Download data: CEL
Series
Accession:
GSE15646
ID:
200015646
20.

Expression profiling of primary leukemia initiating cell-enriched population induced by AML1-ETO9a

(Submitter supplied) Combined gene expression and DNA occupancy profiling identifies JAK/STAT signaling as a valid therapeutic target of t(8;21) AML t(8;21) is commonly associated with acute myeloid leukemia (AML). The resulting AML1-ETO fusion proteins are involved in the pathogenesis of AML. To identify novel molecular and therapeutic targets, we performed combined gene expression and promoter occupancy profiling using a primary leukemia initiating cell-enriched population induced by AML1-ETO9a (AE9a). more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
6 Samples
Download data: CEL, EXP
Series
Accession:
GSE15195
ID:
200015195
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_6731fa96f73b361c515fa484|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center