U.S. flag

An official website of the United States government

Format
Sort by

Send to:

Choose Destination

Links from PMC

Items: 4

1.

RNA-seq in bas1 and ino4 mutants

(Submitter supplied) Meiotic recombination is initiated by developmentally programmed DNA double-strand breaks (DSBs). In S. cerevisiae, the vast majority of DSBs occur in the nucleosome-depleted regions at gene promoters, where transcription factors (TFs) B296bind. It has been proposed that TF binding can stimulate DSB formation nearby by modulating local chromatin structure. However, a prior study in TF bas1 mutant suggested that the role of TF binding in determining break formation is complex. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13821
6 Samples
Download data: TXT
Series
Accession:
GSE70911
ID:
200070911
2.

Bas1 and Ino4 ChIP-seq

(Submitter supplied) Meiotic recombination is initiated by developmentally programmed DNA double-strand breaks (DSBs). In S. cerevisiae, the vast majority of DSBs occur in the nucleosome-depleted regions at gene promoters, where transcription factors (TFs) bind. It has been proposed that TF binding can stimulate DSB formation nearby by modulating local chromatin structure. However, a prior study in TF bas1 mutant suggested that the role of TF binding in determining break formation is complex. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
4 Samples
Download data: TXT
Series
Accession:
GSE67912
ID:
200067912
3.

Spo11-oligo mapping in bas1 and ino4 mutants

(Submitter supplied) Meiotic recombination is initiated by developmentally programmed DNA double-strand breaks (DSBs). In S. cerevisiae, the vast majority of DSBs occur in the nucleosome-depleted regions at gene promoters, where transcription factors (TFs) bind. It has been proposed that TF binding can stimulate DSB formation nearby by modulating local chromatin structure. However, a prior study in TF bas1 mutant suggested that the role of TF binding in determining break formation is complex. more...
Organism:
Saccharomyces cerevisiae
Type:
Other
Platform:
GPL17342
9 Samples
Download data: WIG
Series
Accession:
GSE67910
ID:
200067910
4.

Histone 3 lysine 4 trimethylation (H3K4me3) ChIP in bas1 and ino4 mutants

(Submitter supplied) Meiotic recombination is initiated by developmentally programmed DNA double-strand breaks (DSBs). In S. cerevisiae, the vast majority of DSBs occur in the nucleosome-depleted regions at gene promoters, where transcription factors (TFs) bind. It has been proposed that TF binding can stimulate DSB formation nearby by modulating local chromatin structure. However, a prior study in TF bas1 mutant suggested that the role of TF binding in determining break formation is complex. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
12 Samples
Download data: TXT
Series
Accession:
GSE67907
ID:
200067907
Format
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=3|qty=2|blobid=MCID_67310ae87bb3c546894283c4|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center