U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from PMC

Items: 11

1.

Transcriptome profiling of post-mature green seeds from Arabidopsis ddcc mutant and wild-type

(Submitter supplied) The role of on-CG methylation in seed development and dormancy remains unknown. There are four genes in charge of non-CG methylation in Arabidopsis: drm1, drm2, cmt2 and cmt3. The majority of non-CG methylation in vegetative tissues, leaf, is gone in homozygous ddcc mutant line (Hume et al., 2014). To uncover the possible role of non-CG DNA methylation in seed development and dormancy, we characterized the transcriptome of ddcc mutant in Arabidopsis post-mature green seeds using Illumina sequencing. more...
Organism:
Arabidopsis thaliana
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13222
4 Samples
Download data: TXT
Series
Accession:
GSE76447
ID:
200076447
2.

Methylation Changes in Arabidopsis seed development

(Submitter supplied) There are four major seed developmental phases in Arabidopsis seed development: morphogenesis, maturation, dormancy and germination. What methylation changes occurring in the different phases, if any, remains unknown. To uncover the possible role of DNA methylation in different parts of the seed, we characterized the methylome of four major seed developmental phases of Arabidopsis using Illumina sequencing: global stage (glob) and linear cotyledon stage (lcot) for morphogenesis phase; mature green stage (mg) and post mature green stage (pmg) for maturation phase; dry seed (dry) for dormancy phase; leaves (leaf) from 4 week plant for vegetative tissues.
Organism:
Arabidopsis thaliana
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL13222
6 Samples
Download data: TXT
Series
Accession:
GSE68132
ID:
200068132
3.

Methylation Profile of postmature-green-stage seed and dry seed from Arabidopsis ddcc mutant

(Submitter supplied) The role of non-CG methylation in seed development and dormancy remains unknown. There are four genes in charge of non-CG methylation in Arabidopsis: drm1, drm2, cmt2 and cmt3. The majority of non-CG methylation in vegetative tissues, leaf, is gone in homozygous ddcc mutant line (Hume et al., 2014). To uncover the possible role of non-CG DNA methylation in seed development and dormancy, we characterized the methylome of ddcc mutant in Arabidopsis postmature-green-stage seed and dry seed using Illumina sequencing. more...
Organism:
Arabidopsis thaliana
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL13222
6 Samples
Download data: TXT
Series
Accession:
GSE68131
ID:
200068131
4.

Methylation Changes in Soybean Cotyledon Stage Seed Parts

(Submitter supplied) Seeds are comprised of three major parts of distinct parental origin: the seed coat, embryo, and endosperm. The maternally-derived seed coat is important for nurturing and protecting the seeds during development. By contrast, the embryo and the endosperm are derived from a double fertilization event, where one sperm fertilizes the egg to form the diploid zygote and the other sperm fertilizes the central cell to form the triploid endosperm. more...
Organism:
Glycine max
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL15008
3 Samples
Download data: TXT
Series
Accession:
GSE57762
ID:
200057762
5.

Methylation Changes in Arabidopsis Mature Green Seed Parts

(Submitter supplied) Seeds are comprised of three major parts of distinct parental origin: the seed coat, embryo, and endosperm. The maternally-derived seed coat is important for nurturing and protecting the seeds during development. By contrast, the embryo and the endosperm are derived from a double fertilization event, where one sperm fertilizes the egg to form the diploid zygote and the other sperm fertilizes the central cell to form the triploid endosperm. more...
Organism:
Arabidopsis thaliana
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL13222
2 Samples
Download data: TXT
Series
Accession:
GSE57755
ID:
200057755
6.

Methylation Changes in Soybean Mid-Maturation Seed Parts

(Submitter supplied) Seeds are comprised of three majors parts of distinct parental origin: the seed coat, embryo, and endosperm. The maternally-derived seed coat is important for nurturing and protecting the seeds during development. By contrast, the embryo and the endosperm are derived from a double fertilization event, where one sperm fertilizes the egg to form the diploid zygote and the other sperm fertilizes the central cell to form the triploid endosperm. more...
Organism:
Glycine max
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL15008
3 Samples
Download data: TXT
Series
Accession:
GSE41061
ID:
200041061
7.

Methylation Changes in Soybean Early Maturation Seed Parts

(Submitter supplied) Seeds are comprised of three majors parts of distinct parental origin: the seed coat, embryo, and endosperm. The maternally-derived seed coat is important for nurturing and protecting the seeds during development. By contrast, the embryo and the endosperm are derived from a double fertilization event, where one sperm fertilizes the egg to form the diploid zygote and the other sperm fertilizes the central cell to form the triploid endosperm. more...
Organism:
Glycine max
Type:
Methylation profiling by high throughput sequencing; Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platform:
GPL15008
10 Samples
Download data: TXT
Series
Accession:
GSE37895
ID:
200037895
8.

Methylation Changes in Soybean Early Maturation Seed Compartments Using Laser Capture Microdissection (LCM)

(Submitter supplied) What methylation changes are occurring in different compartments of early maturation stage seed largely remains unknown. To uncover the possible role of DNA methylation in different compartments of early maturation stage seed, we characterized the methylome of two major compartments (abaxial parenchyma and adaxial parenchyma) in embryonic cotyledon, four major compartments (parenchyma, plumule, root tip, and vascular) in embryonic axis, and seed coat layers (parenchyma and palisade) using Illumina sequencing. more...
Organism:
Glycine max
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL15008
10 Samples
Download data: TXT
Series
Accession:
GSE37893
ID:
200037893
9.

Methylation Changes During Soybean Seed Development

(Submitter supplied) What methylation changes are occurring during seed development largely remains unknown. To uncover the possible role of DNA methylation throughout all of seed development - from fertilization through dormancy and post-germination in soybean, we characterized the methylome of whole seeds representing the differentiation (GLOB and COT stages), maturation (early- [EM], mid- [B1] and late- [AA1] maturation stages), dormancy (DRY stage), and post-germination (seedling) phases of soybean seed development using Illumina sequencing. more...
Organism:
Glycine max
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL15008
18 Samples
Download data: TXT
Series
Accession:
GSE34637
ID:
200034637
10.

Genome-Wide Transcript Profiling During Soybean Seed Development and Throughout the Soybean Life Cycle

(Submitter supplied) We report the genome-wide transcriptome of soybean seeds across several stages of seed development and the entire life cycle using Illumina high-throughput sequencing technology. Specifically, we profiled whole seeds containing globular-stage, heart-stage, cotyledon-stage, early maturation-stage, mid-maturation-stage, and late-maturation-stage embryos. We also profiled dry soybean seeds, and vegetative and reproductive tissues including leaves, roots, stems, seedlings, and floral buds.
Organism:
Glycine max
Type:
Expression profiling by high throughput sequencing
Platform:
GPL15008
12 Samples
Download data: TXT
Series
Accession:
GSE29163
ID:
200029163
11.

Epigenetic Regulation of the Transition from Seed Maturation to Germination in Soybean

(Submitter supplied) How epigenetics is involved in the transition from seed maturation to seed germination largely remains elusive. To uncover the possible role of epigenetics in gene expression during the transition from seed maturation to seed germination in soybean, the transcriptome of cotyledons from four stages of soybean seed maturation and germination, including mid-late maturation, late maturation, seed dormancy and seed germination, were profiled by Illumina sequencing. more...
Organism:
Glycine max
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11192
4 Samples
Download data: TXT
Series
Accession:
GSE29134
ID:
200029134
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=3|qty=3|blobid=MCID_6737f669bea12f4e7c8452fc|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center