U.S. flag

An official website of the United States government

Format
Sort by

Send to:

Choose Destination

Links from PMC

Items: 5

1.

Genome-wide maps of ARID1A binding genes in H9 human embryonic stem cells

(Submitter supplied) We reported loss of ARID1A promoted neurogenesis and inhibited cardiogenesis. Here we used specific ARID1A antibody to pull down ARID1A binding genomic DNA in human embryonic stem cells, which let us know the potential genes regulated by ARID1A during neurogenesis and inhibited cardiogenesis. IgG was used as the control.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL20301 GPL18573
2 Samples
Download data: BW, NARROWPEAK
Series
Accession:
GSE152324
ID:
200152324
2.

Essential and Opposite Roles of ARID1A in Coordinating Human Cardiogenesis and Neurogenesis from Pluripotent Stem Cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL18573 GPL24676
8 Samples
Download data: BW, NARROWPEAK, TAR
Series
Accession:
GSE139343
ID:
200139343
3.

Single cell RNA-seq revealed different cell types induced by loss of ARID1A in undifferentiated and differentiation (day 10) H9 hESCs.

(Submitter supplied) We reported loss of ARID1A promoted neurogenesis and inhibited cardiogenesis. Under microscopy, we observed that spontaneously differentiated cells were induced in ARID1A KO H9 hESCs cultured in mTesR medium. After cardiac differentiation for 10 days, we also observed the cell types were totally different between WT and ARID1A KO cells. We did not know what cells types were. Here scRNA-seq were used to identify the cell types in WT H9 hESCs and ARID1A KO H9 hESCs.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL18573 GPL24676
4 Samples
Download data: TAR
Series
Accession:
GSE139342
ID:
200139342
4.

Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) revealed genomic chromatin accessibilities change induced by loss of ARID1A in differentiated (day 4) H9 hESCs

(Submitter supplied) We reported loss of ARID1A promoted neurogenesis and inhibited cardiogenesis. Under microscopy, we observed that spontaneously differentiated cells were induced in ARID1A KO H9 hESCs cultured in mTesR medium. We did not know what cells types were. Here ATAC-seq were used to investigate chromatin accessibilities change in differentiated (day 4) WT H9 hESCs and ARID1A KO hESC cells.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL24676
2 Samples
Download data: BW
5.

Genome-wide maps of ARID1A binding genes in H9 human embryonic stem cells.

(Submitter supplied) We reported loss of ARID1A promoted neurogenesis and inhibited cardiogenesis. Here we used specific ARID1A antibody to pull down ARID1A binding genomic DNA in human embryonic stem cells, which let us know the potential genes regulated by ARID1A during neurogenesis and inhibited cardiogenesis. 1% Input sample was collected from the same sample after chromatin shearing.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
2 Samples
Download data: BW, NARROWPEAK
Series
Accession:
GSE139260
ID:
200139260
Format
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=3|qty=2|blobid=MCID_673bbf0ea56b24050d39d000|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center