U.S. flag

An official website of the United States government

Format

Send to:

Choose Destination

Cyclopia(HPE1)

MedGen UID:
78617
Concept ID:
C0266667
Congenital Abnormality
Synonyms: DEMYER SEQUENCE; Holoprosencephaly 1
SNOMED CT: Cyclocephaly (205798005); Cyclopia (205798005); Monophthalmus (205798005); Synophthalmus (205798005); Synophthalmia (205798005); Cyclops (205798005)
 
HPO: HP:0009914
Monarch Initiative: MONDO:0009349
OMIM®: 236100
Orphanet: ORPHA268936

Definition

Holoprosencephaly (HPE) is the most common structural malformation of the human forebrain and occurs after failed or abbreviated midline cleavage of the developing brain during the third and fourth weeks of gestation. HPE occurs in up to 1 in 250 gestations, but only 1 in 8,000 live births (Lacbawan et al., 2009). Classically, 3 degrees of severity defined by the extent of brain malformation have been described. In the most severe form, 'alobar HPE,' there is a single ventricle and no interhemispheric fissure. The olfactory bulbs and tracts and the corpus callosum are typically absent. In 'semilobar HPE,' the most common type of HPE in neonates who survive, there is partial cortical separation with rudimentary cerebral hemispheres and a single ventricle. In 'lobar HPE,' the ventricles are separated, but there is incomplete frontal cortical separation (Corsello et al., 1990). An additional milder form, called 'middle interhemispheric variant' (MIHV) has also been delineated, in which the posterior frontal and parietal lobes are incompletely separated and the corpus callosum may be hypoplastic (Lacbawan et al., 2009). Finally, microforms of HPE include a single maxillary median incisor or hypotelorism without the typical brain malformations (summary by Mercier et al., 2011). Cohen (2001) discussed problems in the definition of holoprosencephaly, which can be viewed from 2 different perspectives: anatomic (fixed) and genetic (broad). When the main interest is description, the anatomic perspective is appropriate. In genetic perspective, a fixed definition of holoprosencephaly is not appropriate because the same mutational cause may result in either holoprosencephaly or some microform of holoprosencephaly. Cohen (2001) concluded that both fixed and broad definitions are equally valid and depend on context. Munke (1989) provided an extensive review of the etiology and pathogenesis of holoprosencephaly, emphasizing heterogeneity. See also schizencephaly (269160), which may be part of the phenotypic spectrum of HPE. Genetic Heterogeneity of Holoprosencephaly Several loci for holoprosencephaly have been mapped to specific chromosomal sites and the molecular defects in some cases of HPE have been identified. Holoprosencephaly-1 (HPE1) maps to chromosome 21q22. See also HPE2 (157170), caused by mutation in the SIX3 gene (603714) on 2p21; HPE3 (142945), caused by mutation in the SHH gene (600725) on 7q36; HPE4 (142946), caused by mutation in the TGIF gene (602630) on 18p11; HPE5 (609637), caused by mutation in the ZIC2 gene (603073) on 13q32; HPE6 (605934), mapped to 2q37; HPE7 (610828), caused by mutation in the PTCH1 gene (601309) on 9q22; HPE8 (609408), mapped to 14q13; HPE9 (610829), caused by mutation in the GLI2 gene (165230) on 2q14; HPE10 (612530), mapped to 1q41-q42; HPE11 (614226), caused by mutation in the CDON gene (608707) on 11q24; HPE12 (618500), caused by mutation in the CNOT1 gene (604917) on 16q21; HPE13 (301043), caused by mutation in the STAG2 gene (300826) on Xq25; and HPE14 (619895), caused by mutation in the PLCH1 gene (612835) on 3q25. Wallis and Muenke (2000) gave an overview of mutations in holoprosencephaly. They indicated that at least 12 different loci had been associated with HPE. Mutations in genes involved in the multiprotein cohesin complex, including STAG2, have been shown to be involved in midline brain defects such as HPE. Mutations in some of those genes cause Cornelia de Lange syndrome (CDLS; see 122470), and some patients with severe forms of CDLS may have midline brain defects. See, for example, CDLS2 (300590), CDLS3 (610759), and CDLS4 (614701). [from OMIM]

Clinical features

From HPO
Micropenis
MedGen UID:
1633603
Concept ID:
C4551492
Congenital Abnormality
Abnormally small penis. At birth, the normal penis is about 3 cm (stretched length from pubic tubercle to tip of penis) with micropenis less than 2.0-2.5 cm.
Single ventricle
MedGen UID:
56289
Concept ID:
C0152424
Congenital Abnormality
The presence of only one working lower chamber in the heart, usually with a virtual absence of the ventricular septum and usually present in conjunction with double inlet left or right ventricle.
Short stature
MedGen UID:
87607
Concept ID:
C0349588
Finding
A height below that which is expected according to age and gender norms. Although there is no universally accepted definition of short stature, many refer to "short stature" as height more than 2 standard deviations below the mean for age and gender (or below the 3rd percentile for age and gender dependent norms).
Seizure
MedGen UID:
20693
Concept ID:
C0036572
Sign or Symptom
A seizure is an intermittent abnormality of nervous system physiology characterised by a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain.
Corpus callosum, agenesis of
MedGen UID:
104498
Concept ID:
C0175754
Congenital Abnormality
The corpus callosum is the largest fiber tract in the central nervous system and the major interhemispheric fiber bundle in the brain. Formation of the corpus callosum begins as early as 6 weeks' gestation, with the first fibers crossing the midline at 11 to 12 weeks' gestation, and completion of the basic shape by age 18 to 20 weeks (Schell-Apacik et al., 2008). Agenesis of the corpus callosum (ACC) is one of the most frequent malformations in brain with a reported incidence ranging between 0.5 and 70 in 10,000 births. ACC is a clinically and genetically heterogeneous condition, which can be observed either as an isolated condition or as a manifestation in the context of a congenital syndrome (see MOLECULAR GENETICS and Dobyns, 1996). Also see mirror movements-1 and/or agenesis of the corpus callosum (MRMV1; 157600). Schell-Apacik et al. (2008) noted that there is confusion in the literature regarding radiologic terminology concerning partial absence of the corpus callosum, where various designations have been used, including hypogenesis, hypoplasia, partial agenesis, or dysgenesis.
Cerebellar hypoplasia
MedGen UID:
120578
Concept ID:
C0266470
Congenital Abnormality
Cerebellar hypoplasia is a descriptive term implying a cerebellum with a reduced volume, but a normal shape and is stable over time.
Ethmocephaly
MedGen UID:
452352
Concept ID:
C0266680
Congenital Abnormality
Ethmocephaly is the rarest form of holoprosencephaly, which occurs due to an incomplete cleavage of the forebrain. Clinically, the disease presents with a proboscis, hypotelorism, microphthalmos and malformed ears.
Alobar holoprosencephaly
MedGen UID:
140909
Concept ID:
C0431363
Congenital Abnormality
A type of holoprosencephaly characterized by the presence of a single ventricle and no separation of the cerebral hemisphere. The single midline ventricle is often greatly enlarged.
Global developmental delay
MedGen UID:
107838
Concept ID:
C0557874
Finding
A delay in the achievement of motor or mental milestones in the domains of development of a child, including motor skills, speech and language, cognitive skills, and social and emotional skills. This term should only be used to describe children younger than five years of age.
Intellectual disability
MedGen UID:
811461
Concept ID:
C3714756
Mental or Behavioral Dysfunction
Subnormal intellectual functioning which originates during the developmental period. Intellectual disability, previously referred to as mental retardation, has been defined as an IQ score below 70.
Generalized hypotonia
MedGen UID:
346841
Concept ID:
C1858120
Finding
Generalized muscular hypotonia (abnormally low muscle tone).
Microcephaly
MedGen UID:
1644158
Concept ID:
C4551563
Finding
Head circumference below 2 standard deviations below the mean for age and gender.
Hypoglycemia
MedGen UID:
6979
Concept ID:
C0020615
Disease or Syndrome
A decreased concentration of glucose in the blood.
Aplasia of the nose
MedGen UID:
120555
Concept ID:
C0265740
Congenital Abnormality
Complete absence of all nasal structures.
Facial cleft
MedGen UID:
146898
Concept ID:
C0685787
Congenital Abnormality
A congenital malformation with a cleft (gap or opening) in the face.
Midface retrusion
MedGen UID:
339938
Concept ID:
C1853242
Anatomical Abnormality
Posterior positions and/or vertical shortening of the infraorbital and perialar regions, or increased concavity of the face and/or reduced nasolabial angle.
Median cleft lip and palate
MedGen UID:
413888
Concept ID:
C2750604
Finding
Cleft lip or palate affecting the midline region of the palate.
Proboscis
MedGen UID:
1684306
Concept ID:
C5194070
Congenital Abnormality
A fleshy, tube-like structure usually located in the midline of the face or just to one side of the midline.
Diabetes insipidus
MedGen UID:
8349
Concept ID:
C0011848
Disease or Syndrome
A state of excessive water intake and hypotonic (dilute) polyuria. Diabetes insipidus may be due to failure of vasopressin (AVP) release (central or neurogenic diabetes insipidus) or to a failure of the kidney to respond to AVP (nephrogenic diabetes insipidus).
Adrenal hypoplasia
MedGen UID:
337539
Concept ID:
C1846223
Pathologic Function
Developmental hypoplasia of the adrenal glands.
Microphthalmia
MedGen UID:
10033
Concept ID:
C0026010
Congenital Abnormality
Microphthalmia is an eye abnormality that arises before birth. In this condition, one or both eyeballs are abnormally small. In some affected individuals, the eyeball may appear to be completely missing; however, even in these cases some remaining eye tissue is generally present. Such severe microphthalmia should be distinguished from another condition called anophthalmia, in which no eyeball forms at all. However, the terms anophthalmia and severe microphthalmia are often used interchangeably. Microphthalmia may or may not result in significant vision loss.\n\nPeople with microphthalmia may also have a condition called coloboma. Colobomas are missing pieces of tissue in structures that form the eye. They may appear as notches or gaps in the colored part of the eye called the iris; the retina, which is the specialized light-sensitive tissue that lines the back of the eye; the blood vessel layer under the retina called the choroid; or in the optic nerves, which carry information from the eyes to the brain. Colobomas may be present in one or both eyes and, depending on their size and location, can affect a person's vision.\n\nPeople with microphthalmia may also have other eye abnormalities, including clouding of the lens of the eye (cataract) and a narrowed opening of the eye (narrowed palpebral fissure). Additionally, affected individuals may have an abnormality called microcornea, in which the clear front covering of the eye (cornea) is small and abnormally curved.\n\nBetween one-third and one-half of affected individuals have microphthalmia as part of a syndrome that affects other organs and tissues in the body. These forms of the condition are described as syndromic. When microphthalmia occurs by itself, it is described as nonsyndromic or isolated.
Cyclopia
MedGen UID:
78617
Concept ID:
C0266667
Congenital Abnormality
Holoprosencephaly (HPE) is the most common structural malformation of the human forebrain and occurs after failed or abbreviated midline cleavage of the developing brain during the third and fourth weeks of gestation. HPE occurs in up to 1 in 250 gestations, but only 1 in 8,000 live births (Lacbawan et al., 2009). Classically, 3 degrees of severity defined by the extent of brain malformation have been described. In the most severe form, 'alobar HPE,' there is a single ventricle and no interhemispheric fissure. The olfactory bulbs and tracts and the corpus callosum are typically absent. In 'semilobar HPE,' the most common type of HPE in neonates who survive, there is partial cortical separation with rudimentary cerebral hemispheres and a single ventricle. In 'lobar HPE,' the ventricles are separated, but there is incomplete frontal cortical separation (Corsello et al., 1990). An additional milder form, called 'middle interhemispheric variant' (MIHV) has also been delineated, in which the posterior frontal and parietal lobes are incompletely separated and the corpus callosum may be hypoplastic (Lacbawan et al., 2009). Finally, microforms of HPE include a single maxillary median incisor or hypotelorism without the typical brain malformations (summary by Mercier et al., 2011). Cohen (2001) discussed problems in the definition of holoprosencephaly, which can be viewed from 2 different perspectives: anatomic (fixed) and genetic (broad). When the main interest is description, the anatomic perspective is appropriate. In genetic perspective, a fixed definition of holoprosencephaly is not appropriate because the same mutational cause may result in either holoprosencephaly or some microform of holoprosencephaly. Cohen (2001) concluded that both fixed and broad definitions are equally valid and depend on context. Munke (1989) provided an extensive review of the etiology and pathogenesis of holoprosencephaly, emphasizing heterogeneity. See also schizencephaly (269160), which may be part of the phenotypic spectrum of HPE. Genetic Heterogeneity of Holoprosencephaly Several loci for holoprosencephaly have been mapped to specific chromosomal sites and the molecular defects in some cases of HPE have been identified. Holoprosencephaly-1 (HPE1) maps to chromosome 21q22. See also HPE2 (157170), caused by mutation in the SIX3 gene (603714) on 2p21; HPE3 (142945), caused by mutation in the SHH gene (600725) on 7q36; HPE4 (142946), caused by mutation in the TGIF gene (602630) on 18p11; HPE5 (609637), caused by mutation in the ZIC2 gene (603073) on 13q32; HPE6 (605934), mapped to 2q37; HPE7 (610828), caused by mutation in the PTCH1 gene (601309) on 9q22; HPE8 (609408), mapped to 14q13; HPE9 (610829), caused by mutation in the GLI2 gene (165230) on 2q14; HPE10 (612530), mapped to 1q41-q42; HPE11 (614226), caused by mutation in the CDON gene (608707) on 11q24; HPE12 (618500), caused by mutation in the CNOT1 gene (604917) on 16q21; HPE13 (301043), caused by mutation in the STAG2 gene (300826) on Xq25; and HPE14 (619895), caused by mutation in the PLCH1 gene (612835) on 3q25. Wallis and Muenke (2000) gave an overview of mutations in holoprosencephaly. They indicated that at least 12 different loci had been associated with HPE. Mutations in genes involved in the multiprotein cohesin complex, including STAG2, have been shown to be involved in midline brain defects such as HPE. Mutations in some of those genes cause Cornelia de Lange syndrome (CDLS; see 122470), and some patients with severe forms of CDLS may have midline brain defects. See, for example, CDLS2 (300590), CDLS3 (610759), and CDLS4 (614701).
Hypotelorism
MedGen UID:
96107
Concept ID:
C0424711
Finding
Interpupillary distance less than 2 SD below the mean (alternatively, the appearance of an decreased interpupillary distance or closely spaced eyes).

Conditions with this feature

Cyclopia
MedGen UID:
78617
Concept ID:
C0266667
Congenital Abnormality
Holoprosencephaly (HPE) is the most common structural malformation of the human forebrain and occurs after failed or abbreviated midline cleavage of the developing brain during the third and fourth weeks of gestation. HPE occurs in up to 1 in 250 gestations, but only 1 in 8,000 live births (Lacbawan et al., 2009). Classically, 3 degrees of severity defined by the extent of brain malformation have been described. In the most severe form, 'alobar HPE,' there is a single ventricle and no interhemispheric fissure. The olfactory bulbs and tracts and the corpus callosum are typically absent. In 'semilobar HPE,' the most common type of HPE in neonates who survive, there is partial cortical separation with rudimentary cerebral hemispheres and a single ventricle. In 'lobar HPE,' the ventricles are separated, but there is incomplete frontal cortical separation (Corsello et al., 1990). An additional milder form, called 'middle interhemispheric variant' (MIHV) has also been delineated, in which the posterior frontal and parietal lobes are incompletely separated and the corpus callosum may be hypoplastic (Lacbawan et al., 2009). Finally, microforms of HPE include a single maxillary median incisor or hypotelorism without the typical brain malformations (summary by Mercier et al., 2011). Cohen (2001) discussed problems in the definition of holoprosencephaly, which can be viewed from 2 different perspectives: anatomic (fixed) and genetic (broad). When the main interest is description, the anatomic perspective is appropriate. In genetic perspective, a fixed definition of holoprosencephaly is not appropriate because the same mutational cause may result in either holoprosencephaly or some microform of holoprosencephaly. Cohen (2001) concluded that both fixed and broad definitions are equally valid and depend on context. Munke (1989) provided an extensive review of the etiology and pathogenesis of holoprosencephaly, emphasizing heterogeneity. See also schizencephaly (269160), which may be part of the phenotypic spectrum of HPE. Genetic Heterogeneity of Holoprosencephaly Several loci for holoprosencephaly have been mapped to specific chromosomal sites and the molecular defects in some cases of HPE have been identified. Holoprosencephaly-1 (HPE1) maps to chromosome 21q22. See also HPE2 (157170), caused by mutation in the SIX3 gene (603714) on 2p21; HPE3 (142945), caused by mutation in the SHH gene (600725) on 7q36; HPE4 (142946), caused by mutation in the TGIF gene (602630) on 18p11; HPE5 (609637), caused by mutation in the ZIC2 gene (603073) on 13q32; HPE6 (605934), mapped to 2q37; HPE7 (610828), caused by mutation in the PTCH1 gene (601309) on 9q22; HPE8 (609408), mapped to 14q13; HPE9 (610829), caused by mutation in the GLI2 gene (165230) on 2q14; HPE10 (612530), mapped to 1q41-q42; HPE11 (614226), caused by mutation in the CDON gene (608707) on 11q24; HPE12 (618500), caused by mutation in the CNOT1 gene (604917) on 16q21; HPE13 (301043), caused by mutation in the STAG2 gene (300826) on Xq25; and HPE14 (619895), caused by mutation in the PLCH1 gene (612835) on 3q25. Wallis and Muenke (2000) gave an overview of mutations in holoprosencephaly. They indicated that at least 12 different loci had been associated with HPE. Mutations in genes involved in the multiprotein cohesin complex, including STAG2, have been shown to be involved in midline brain defects such as HPE. Mutations in some of those genes cause Cornelia de Lange syndrome (CDLS; see 122470), and some patients with severe forms of CDLS may have midline brain defects. See, for example, CDLS2 (300590), CDLS3 (610759), and CDLS4 (614701).
Holoprosencephaly 2
MedGen UID:
322517
Concept ID:
C1834877
Disease or Syndrome
A rare disorder characterized by the partial separation of the cerebral hemispheres. It is associated with mutations in the SIX3 gene.
Solitary median maxillary central incisor
MedGen UID:
326686
Concept ID:
C1840235
Congenital Abnormality
A single maxillary central incisor positioned in the midline with morphological symmetry of the crown and bordered by lateral incisors.
Holoprosencephaly 3
MedGen UID:
327125
Concept ID:
C1840529
Disease or Syndrome
Any holoprosencephaly in which the cause of the disease is a mutation in the SHH gene.
Holoprosencephaly-postaxial polydactyly syndrome
MedGen UID:
340382
Concept ID:
C1849649
Disease or Syndrome
Holoprosencephaly-postaxial polydactyly syndrome associates, in chromosomally normal neonates, holoprosencephaly, severe facial dysmorphism, postaxial polydactyly and other congenital abnormalities, suggestive of trisomy 13. Incidence is unknown. Dysmorphic features include hypotelorism, severe eye anomalies such as microphthalmia or anophthalmia, premaxillary region aplasia and cleft lip and palate. Congenital cardiac anomalies are common. The condition seems to be inherited as an autosomal recessive trait. Prognosis is poor.
Holoprosencephaly 13, X-linked
MedGen UID:
1714826
Concept ID:
C5393308
Disease or Syndrome
X-linked holoprosencephaly-13 (HPE13) is a neurologic disorder characterized by midline developmental defects that mainly affect the brain and craniofacial structure. The severity and manifestations are variable: some patients may have full alobar HPE with cyclopia, whereas others have semilobar HPE or septooptic dysplasia. Dysmorphic features include microcephaly, hypotelorism, low-set ears, micrognathia, and cleft lip/palate. Patients with a more severe phenotype may die in the newborn period, whereas those with a less severe phenotype show global developmental delay. Additional variable features include congenital heart defects and vertebral anomalies. Phenotypic variability may be related to the type of mutation, X-inactivation status, and possible incomplete penetrance. The STAG2 protein is part of the multiprotein cohesin complex involved in chromatid cohesion during DNA replication and transcriptional regulation; HPE13 can thus be classified as a 'cohesinopathy' (summary by Kruszka et al., 2019). For a discussion of genetic heterogeneity of holoprosencephaly, see HPE1 (236100).
Holoprosencephaly 14
MedGen UID:
1811868
Concept ID:
C5676994
Disease or Syndrome
Holoprosencephaly-14 (HPE14) is an autosomal recessive condition characterized by severe developmental delay secondary to brain malformations within the holoprosencephaly spectrum (Drissi et al., 2022). For general phenotypic information and a discussion of genetic heterogeneity of holoprosencephaly, see HPE1 (236100).

Professional guidelines

PubMed

Dubourg C, Lazaro L, Pasquier L, Bendavid C, Blayau M, Le Duff F, Durou MR, Odent S, David V
Hum Mutat 2004 Jul;24(1):43-51. doi: 10.1002/humu.20056. PMID: 15221788
Lai TH, Chang CH, Yu CH, Kuo PL, Chang FM
Prenat Diagn 2000 May;20(5):400-3. doi: 10.1002/(sici)1097-0223(200005)20:5<400::aid-pd839>3.0.co;2-l. PMID: 10820408

Recent clinical studies

Etiology

Summers AD, Reefhuis J, Taliano J, Rasmussen SA
Am J Med Genet C Semin Med Genet 2018 Jun;178(2):151-164. Epub 2018 May 15 doi: 10.1002/ajmg.c.31614. PMID: 29761639Free PMC Article
Visser K, Mortimer M, Louw A
PLoS One 2013;8(11):e79223. Epub 2013 Nov 4 doi: 10.1371/journal.pone.0079223. PMID: 24223909Free PMC Article
Matkowski A, Kuś P, Góralska E, Woźniak D
Mini Rev Med Chem 2013 Mar;13(3):439-55. PMID: 23190031
Orioli IM, Amar E, Bakker MK, Bermejo-Sánchez E, Bianchi F, Canfield MA, Clementi M, Correa A, Csáky-Szunyogh M, Feldkamp ML, Landau D, Leoncini E, Li Z, Lowry RB, Mastroiacovo P, Morgan M, Mutchinick OM, Rissmann A, Ritvanen A, Scarano G, Szabova E, Castilla EE
Am J Med Genet C Semin Med Genet 2011 Nov 15;157C(4):344-57. Epub 2011 Oct 17 doi: 10.1002/ajmg.c.30323. PMID: 22006661Free PMC Article
Castilla EE, Mastroiacovo P
Am J Med Genet C Semin Med Genet 2011 Nov 15;157C(4):252-61. Epub 2011 Oct 14 doi: 10.1002/ajmg.c.30315. PMID: 22002945

Diagnosis

Syrrou M, Batistatou A, Zoubouli M, Pampanos A
Am J Med Genet C Semin Med Genet 2021 Jun;187(2):235-239. Epub 2021 May 13 doi: 10.1002/ajmg.c.31893. PMID: 33982348
Ohuchi H, Sato K, Habuta M, Fujita H, Bando T
Congenit Anom (Kyoto) 2019 May;59(3):56-73. Epub 2018 Aug 21 doi: 10.1111/cga.12304. PMID: 30039880
Nagaraj UD, Lawrence A, Vezina LG, Bulas DI, duPlessis AJ
Pediatr Radiol 2016 Jan;46(1):145-7. Epub 2015 Aug 11 doi: 10.1007/s00247-015-3440-7. PMID: 26260203
Verma AS, Fitzpatrick DR
Orphanet J Rare Dis 2007 Nov 26;2:47. doi: 10.1186/1750-1172-2-47. PMID: 18039390Free PMC Article
Dubourg C, Bendavid C, Pasquier L, Henry C, Odent S, David V
Orphanet J Rare Dis 2007 Feb 2;2:8. doi: 10.1186/1750-1172-2-8. PMID: 17274816Free PMC Article

Therapy

Hering A, Ochocka JR, Baranska H, Cal K, Stefanowicz-Hajduk J
Molecules 2021 Oct 29;26(21) doi: 10.3390/molecules26216547. PMID: 34770957Free PMC Article
Louw A, Joubert E, Visser K
Planta Med 2013 May;79(7):580-90. Epub 2013 Apr 22 doi: 10.1055/s-0032-1328463. PMID: 23609108
Joubert E, Gelderblom WC, Louw A, de Beer D
J Ethnopharmacol 2008 Oct 28;119(3):376-412. Epub 2008 Jun 22 doi: 10.1016/j.jep.2008.06.014. PMID: 18621121
Blagosklonny MV
Cell Cycle 2005 Nov;4(11):1518-21. Epub 2005 Nov 26 doi: 10.4161/cc.4.11.2208. PMID: 16258270
Batts JA Jr, Punnett HH, Valdes-Dapena M, Coles JW, Green WR
Am J Obstet Gynecol 1972 Mar;112(5):657-61. doi: 10.1016/0002-9378(72)90791-0. PMID: 5059596

Prognosis

Roessler E, Hu P, Muenke M
Am J Med Genet C Semin Med Genet 2018 Jun;178(2):165-174. Epub 2018 May 17 doi: 10.1002/ajmg.c.31615. PMID: 29770992
Dubourg C, Bendavid C, Pasquier L, Henry C, Odent S, David V
Orphanet J Rare Dis 2007 Feb 2;2:8. doi: 10.1186/1750-1172-2-8. PMID: 17274816Free PMC Article
Worku B
Ethiop Med J 2003 Oct;41(4):367-70. PMID: 15296419
Edison R, Muenke M
Congenit Anom (Kyoto) 2003 Mar;43(1):1-21. doi: 10.1111/j.1741-4520.2003.tb01022.x. PMID: 12692399
Chowdhury N, Nayek K
Indian Pediatr 2002 Oct;39(10):973-4. PMID: 12428047

Clinical prediction guides

Roessler E, Hu P, Muenke M
Am J Med Genet C Semin Med Genet 2018 Jun;178(2):165-174. Epub 2018 May 17 doi: 10.1002/ajmg.c.31615. PMID: 29770992
Verma AS, Fitzpatrick DR
Orphanet J Rare Dis 2007 Nov 26;2:47. doi: 10.1186/1750-1172-2-47. PMID: 18039390Free PMC Article
Dubourg C, Bendavid C, Pasquier L, Henry C, Odent S, David V
Orphanet J Rare Dis 2007 Feb 2;2:8. doi: 10.1186/1750-1172-2-8. PMID: 17274816Free PMC Article
Worku B
Ethiop Med J 2003 Oct;41(4):367-70. PMID: 15296419
Nanni L, Schelper RL, Muenke MT
Front Biosci 2000 Mar 1;5:D334-42. doi: 10.2741/nanni. PMID: 10704430

Supplemental Content

Table of contents

    Clinical resources

    Practice guidelines

    • PubMed
      See practice and clinical guidelines in PubMed. The search results may include broader topics and may not capture all published guidelines. See the FAQ for details.
    • Bookshelf
      See practice and clinical guidelines in NCBI Bookshelf. The search results may include broader topics and may not capture all published guidelines. See the FAQ for details.

    Consumer resources

    Recent activity

    Your browsing activity is empty.

    Activity recording is turned off.

    Turn recording back on

    See more...