U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

MNase digestion-sensitive nucleosomes in Saccharomyces cerevisiae

(Submitter supplied) The structural complexity of nucleosomes underlies their functional versatility. Here we report a new type of complexity – nucleosome fragility, manifested as high sensitivity to micrococcal nuclease, in contrast to the common presumption that nucleosomes are similar in resistance to MNase digestion. Using differential MNase digestion of chromatin and high-throughput sequencing, we have identified a special group of nucleosomes termed fragile nucleosomes throughout the yeast genome, nearly one thousand of which are at previously determined “nucleosome free” loci. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9134
10 Samples
Download data: TXT
Series
Accession:
GSE26412
ID:
200026412
2.

Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome dynamics

(Submitter supplied) Understanding chromatin dynamics is a key to other related processes, including DNA replication, transcription and recombination. As a first step, recently, an increasing amount of effort has been devoted to precisely define nucleosome positioning in different organisms. The most popular method to do so is digestion by Micrococcal nuclease (MNase), nowadays followed by ultrasequencing of the generated fragments. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL13821 GPL13272
3 Samples
Download data: BED
Series
Accession:
GSE94313
ID:
200094313
3.

Chromatin-dependent regulation of the RNA polymerases II and III activity throughout the transcription cycle

(Submitter supplied) We have developed a new genome-wide protocol for nascent transcription analysis at high resolution in the yeast Saccharomyces cerevisiae. This protocol is based in run-on labeling of nascent RNA with a biotinylated precursor. We call it BioGRO for biotin-based genomic run-on.
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by genome tiling array; Genome binding/occupancy profiling by genome tiling array
Platform:
GPL18871
7 Samples
Download data: BAR, CEL, TXT
Series
Accession:
GSE58859
ID:
200058859
4.

Genomic Run On (GRO): determination of the nascent transcriptional rates and mRNA levels in several yeast mutants.

(Submitter supplied) In order to maintain the appropriate level of mRNA it is necessary coordinate simultaneously all the steps along the mRNA life cycle. It has been shown that several factors act in the regulation of gene expression as global coordinators. Thus, some kind of information is transferred from the nucleus to the cytoplasm, imprinted in the mRNA. In this way, it is conceivable the existence of mechanisms that ensure the balance between mRNA synthesis and degradation through the information flow from the cytoplasm to the nucleus and vice versa, as a crosstalk among both process to ensure the proper mRNA homeostasis in the cell. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL13620
18 Samples
Download data: TXT
Series
Accession:
GSE57467
ID:
200057467
5.

Nucleosome fragility is associated with future transcriptional response to developmental cues and stress in C. elegans

(Submitter supplied) Nucleosomes have structural and regulatory functions in all eukaryotic DNA-templated processes. The position of nucleosomes on DNA and the stability of the underlying histone-DNA interactions affect the access of regulatory proteins to DNA. Both stability and position are regulated through DNA sequence, histone post-translational modifications, histone variants, chromatin remodelers, and transcription factors. more...
Organism:
Caenorhabditis elegans
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18245
24 Samples
Download data: BED, BW, TXT
Series
Accession:
GSE79567
ID:
200079567
6.

RSC Defines MNase-sensitive Promoter Architecture in Yeast

(Submitter supplied) The classic view of nucleosome organization at active promoters is that two well-positioned nucleosomes flank a nucleosome-depleted region (NDR). However, this view has been recently challenged by contradictory reports as to whether a distinct set of wider (≳150 bp) NDRs instead contain unusually unstable Micrococcal Nuclease-sensitive “fragile” particles, thought to be nucleosomal because of their size. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
63 Samples
Download data: BEDGRAPH, PDF
Series
Accession:
GSE116853
ID:
200116853
7.

MNase sensitivity of promoter chromatin in GM12878 cells during stimulation with heat-killed Salmonella typhimurium

(Submitter supplied) We employed an MNase-Transcription Start Site Sequence Capture method to map and determine the accessibility of all nucleosomes during immune stimulus, at high coverage for all human Pol II promoters. We uncovered features of nucleosomal organization and sensitivity to MNase digestion in B-lymphoblastoid cells. We also find that transcription factor binding is associated with sensitive nucleosomes.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
16 Samples
Download data: TXT
Series
Accession:
GSE139224
ID:
200139224
8.

A role for Snf2 related nucleosome spacing enzymes in genome-wide nucleosome organization

(Submitter supplied) The positioning of nucleosomes within the coding regions of eukaryotic genes is aligned with respect to transcriptional start sites. This organization is likely to influence many genetic processes, requiring access to the underlying DNA. Here we show that the combined action of Isw1 and Chd1 nucleosome spacing enzymes is required to maintain this organization. In the absence of these enzymes regular positioning of the majority of nucleosomes is lost. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL14009
3 Samples
Download data: TXT
Series
Accession:
GSE31833
ID:
200031833
9.

Localization of Isw1-3xFLAG in wild-type yeast.

(Submitter supplied) ChIP-chip assays to determine the localisation of 3xFLAG tagged Isw1 in wild-type yeast.
Organism:
Saccharomyces cerevisiae S288C; Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL13972
3 Samples
Download data: TXT
Series
Accession:
GSE31301
ID:
200031301
10.

A role for Snf2 related nucleosome spacing enzymes in genome-wide nucleosome organization

(Submitter supplied) The positioning of nucleosomes within the coding regions of eukaryotic genes is aligned with respect to transcriptional start sites. This organization is likely to influence many genetic processes, requiring access to the underlying DNA. Here we show that the combined action of Isw1 and Chd1 nucleosome spacing enzymes is required to maintain this organization. In the absence of these enzymes regular positioning of the majority of nucleosomes is lost. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9134
5 Samples
Download data: BW
Series
Accession:
GSE31015
ID:
200031015
11.

Two Distinct Promoter Nucleosome Architectures at Protein-Coding Genes in Yeast

(Submitter supplied) Previous studies indicate that eukaryotic promoters display a stereotypical chromatin landscape characterized by a well-positioned +1 nucleosome near the transcription start site and an upstream -1 nucleosome that together demarcate a nucleosome-free (or depleted) region. Here we present evidence that there are two distinct types of promoters distinguished by the resistance of the -1 nucleosome to micrococcal nuclease digestion. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
32 Samples
Download data: BW
Series
Accession:
GSE73337
ID:
200073337
12.

MNase-chip of maize B73

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Zea mays
Type:
Genome binding/occupancy profiling by genome tiling array
Platforms:
GPL19041 GPL19042
34 Samples
Download data: PAIR
Series
Accession:
GSE60092
ID:
200060092
13.

MNase-chip of maize B73 immature ears and seedlings

(Submitter supplied) The eukaryotic nuclear genome is organized into the fundamental units of chromatin, nucleosomes. The positions and biochemical states of nucleosomes on DNA can regulate protein-DNA interactions, and in turn influence DNA-templated events. Despite the increasing number of genome-wide maps of nucleosome position, how global changes in nucleosome position relate to changes in gene expression is poorly understood. more...
Organism:
Zea mays
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL19042
24 Samples
Download data: PAIR, TSV
Series
Accession:
GSE60090
ID:
200060090
14.

MNase-chip of maize B73 immature ears, seedling shoots, and seedling roots

(Submitter supplied) The eukaryotic nuclear genome is organized into the fundamental units of chromatin, nucleosomes. The positions and biochemical states of nucleosomes on DNA can regulate protein-DNA interactions, and in turn influence DNA-templated events. Despite the increasing number of genome-wide maps of nucleosome position, how global changes in nucleosome position relate to changes in gene expression is poorly understood. more...
Organism:
Zea mays
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL19041
10 Samples
Download data: PAIR, TSV
Series
Accession:
GSE60089
ID:
200060089
15.

Asymmetric nucleosomes flank promoters in the budding yeast genome

(Submitter supplied) Nucleosomes in active chromatin are dynamic, but whether they have distinct structural conformations is unknown. To identify nucleosomes with alternative structures genome-wide, we used H4S47C-anchored cleavage mapping, which revealed that nucleosomes at 5% of budding yeast nucleosome positions have asymmetric histone-DNA interactions. These asymmetric interactions are enriched at nucleosome positions that flank promoters. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL17342 GPL13821
17 Samples
Download data: BED
Series
Accession:
GSE59523
ID:
200059523
16.

Effects of Histone H3 depletion on nucleosome occupancy and positioning through the S. cerevisiae genome

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL13272
20 Samples
Download data: BED, TXT, WIG
Series
Accession:
GSE29294
ID:
200029294
17.

Effects of Histone H3 depletion on nucleosome occupancy and positioning through the S. cerevisiae genome [RNA_seq]

(Submitter supplied) Experiments performed over the past three decades have shown that nucleosomes are transcriptional repressors. In Saccharomyces cerevisiae, depletion of histone H4 results in the genome-wide transcriptional de-repression of hundreds genes. The mechanism of de-repression is hypothesized to be rooted directly in chromatin changes. To test this, we reproduced classical H4 depletion experiments by conditional repression of all histone H3 transcription, which depletes the supply of nucleosomes in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13272
6 Samples
Download data: WIG
Series
Accession:
GSE29293
ID:
200029293
18.

Effects of Histone H3 depletion on nucleosome occupancy and positioning through the S. cerevisiae genome [Paired-end Mnase-seq]

(Submitter supplied) Experiments performed over the past three decades have shown that nucleosomes are transcriptional repressors. In Saccharomyces cerevisiae, depletion of histone H4 results in the genome-wide transcriptional de-repression of hundreds genes. The mechanism of de-repression is hypothesized to be rooted directly in chromatin changes. To test this, we reproduced classical H4 depletion experiments by conditional repression of all histone H3 transcription, which depletes the supply of nucleosomes in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13272
8 Samples
Download data: BED, TXT
Series
Accession:
GSE29292
ID:
200029292
19.

Effects of Histone H3 depletion on nucleosome occupancy and positioning through the S. cerevisiae genome [single-end MNase-seq]

(Submitter supplied) Experiments performed over the past three decades have shown that nucleosomes are transcriptional repressors. In Saccharomyces cerevisiae, depletion of histone H4 results in the genome-wide transcriptional de-repression of hundreds genes. The mechanism of de-repression is hypothesized to be rooted directly in chromatin changes. To test this, we reproduced classical H4 depletion experiments by conditional repression of all histone H3 transcription, which depletes the supply of nucleosomes in vivo. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13272
6 Samples
Download data: BED, TXT
Series
Accession:
GSE29291
ID:
200029291
20.

Genome-wide chromatin mapping with size resolution reveals a dynamic sub-nucleosomal landscape in Arabidopsis

(Submitter supplied) Background: Analysis of the effect that chromatin structure has on the expression patterns of eukaryotic genes has recently expanded knowledge of the complex influence genome accessibility has on genome function. Interlaced with regular nucleosomal patterning are other mobile and labile sub-nucleosomal-sized protein structures bound to the genome such as transcription factors (TF), initiation complexes, and modified nucleosomes. more...
Organism:
Arabidopsis thaliana
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL17639
16 Samples
Download data: CSV, WIG
Series
Accession:
GSE94377
ID:
200094377
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=2|qty=7|blobid=MCID_671f5369e158b40557b8e775|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Support Center