U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Effect of p53 knowkdown on genome-wide map of AR-DNA binding

(Submitter supplied) We report that p53 knockdown changed AR-DNA binding across the genome. We found fewer AR-binding sites in the absence of p53.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL10999
2 Samples
Download data: BED
Series
Accession:
GSE31294
ID:
200031294
2.

Effect of FOXA1 overexpression in prostate cancer

(Submitter supplied) FOXA1 is a transcription factor which aids AR function in prostate. There is controversary over the effect of high FOXA1 level has on prostate cancer so we forced the overexpression in the LNCaP prostate cancer cell line.
Organism:
Homo sapiens
Type:
Expression profiling by array
Dataset:
GDS4957
Platform:
GPL10558
12 Samples
Download data: TXT
Series
Accession:
GSE49153
ID:
200049153
3.
Full record GDS4957

FOXA1 overexpression effect on prostate cancer cell line

Analysis of LNCaP prostate cancer cells overexpressing FOXA1. FOXA1 is a key member of the androgen receptor (AR) transcription factor complex. Results provide insight into the role of FOXA1 in prostate cancer.
Organism:
Homo sapiens
Type:
Expression profiling by array, transformed count, 2 protocol sets
Platform:
GPL10558
Series:
GSE49153
12 Samples
Download data
4.

Overexpression of androgen receptor enhances the binding of the receptor to the chromatin in prostate cancer

(Submitter supplied) Androgen receptor (AR) is overexpressed in the majority of castration-resistant prostate cancers (CRPCs). Our goal was to study the effect of AR overexpression on the chromatin binding of the receptor and to identify AR target genes that may be important in the emergence of CRPC. We have established two sublines of LNCaP prostate cancer (PC) cell line, one overexpressing AR 2–3-fold and the other 4–5-fold compared with the control cells. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9115
13 Samples
Download data: BED
Series
Accession:
GSE48308
ID:
200048308
5.

Cooperativity and Equilibrium with FOXA1 Define Androgen Receptor Transcriptional Program

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by array
5 related Platforms
31 Samples
Download data: BEDGRAPH, TXT
Series
Accession:
GSE55007
ID:
200055007
6.

Cooperativity and Equilibrium with FOXA1 Define Androgen Receptor Transcriptional Program [array]

(Submitter supplied) Previous studies have shown that FOXA1 defines prostatic AR binding events, the underlying mechanisms of which, however, are incompletely understood.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
4 Samples
Download data: TXT
Series
Accession:
GSE54991
ID:
200054991
7.

FoxA1 inhibits androgen receptor expression and suppresses prostate cancer metastasis [DU145, ChIP-seq]

(Submitter supplied) FoxA1 has been shown critical for prostate development and prostate-specific gene expression regulation. In addition to its well-established role as an AR pioneering factor,several studies have recently revealed significant AR binding events in prostate cancer cells with FoxA1 knockdown. Furthermore, the role of FoxA1 itself in prostate cancer has not been carefully examined. Thus, it is important to understand the role of FoxA1 in prostate cancer and how it interacts with AR signaling.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL11154 GPL16791
18 Samples
Download data: TXT
Series
Accession:
GSE47987
ID:
200047987
8.

FoxA1 inhibits androgen receptor expression and suppresses prostate cancer metastasis [LNCaP, ChIP-seq]

(Submitter supplied) FoxA1 has been shown critical for prostate development and prostate-specific gene expression regulation. In addition to its well-established role as an AR pioneering factor,several studies have recently revealed significant AR binding events in prostate cancer cells with FoxA1 knockdown. Furthermore, the role of FoxA1 itself in prostate cancer has not been carefully examined. Thus, it is important to understand the role of FoxA1 in prostate cancer and how it interacts with AR signaling. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL15456 GPL10999
9 Samples
Download data: BEDGRAPH, TXT
Series
Accession:
GSE37345
ID:
200037345
9.

PIAS1 is a target gene selective androgen receptor coregulator in prostate cancer cell chromatin

(Submitter supplied) To study the importance of PIAS1 (protein inhibitor of activated STAT1) for the androgen-regulated transcriptome of VCaP prostate cancer cells, we silenced its expression by RNAi. Transcriptome analyses revealed that a subset of the androgen-regulated genes is significantly influenced, either activated or repressed, by PIAS1 depletion. The depletion also exposed a completely new set of genes to androgen regulation, suggesting that PIAS1 can mask genes from androgen receptor (AR). more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL11154 GPL9052
24 Samples
Download data: BED, BEDGRAPH
Series
Accession:
GSE56086
ID:
200056086
10.

Genome-wide analysis of the effect of PIAS1 knockdown by siRNA on the androgen regulated gene programs

(Submitter supplied) Analysis of PIAS1 co-regulation in the androgen signaling pathways in prostate cancer cell line.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
12 Samples
Download data: TXT
Series
Accession:
GSE30316
ID:
200030316
11.

Crosstalk between androgen and proinflammatory signaling activates a distinct transcription program in prostate cancer cells

(Submitter supplied) Crosstalk of androgen signaling induced with dihydrotestosterone (DHT) and proinflammatory signaling induced with tumor necrosis-factor alpha (TNFa) was analyzed in prostate cancer cells (LNCaP) by following chromatin binding of androgen receptor (AR), p65 (activating subunit of nuclear-factor kappa-B [NFkB]), FOXA1 and PIAS1+2 chromatin binding using ChIP-seq and transcriptional changes using GRO-seq.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Other; Expression profiling by high throughput sequencing
Platform:
GPL11154
46 Samples
Download data: BED, TDF
12.

NKX3-1, a Novel Transcriptional Factor of AR, Promotes Prostate Cancer Cell Survival via RAB3B GTPase-mediated protein trafficking (mRNA)

(Submitter supplied) Androgen receptor (AR) orchestrates an intricate transcriptional regulatory network that governs prostate cancer initiation, development and progression. To understand this network in detail, we generated genome-wide maps of AR occupancy by ChIP-seq in LNCaP cells. We found NKX3-1, an androgen-dependent homeobox protein well-characterized for its role in prostate development and differentiation, being recruited to AR binding sites (ARBS) in response to androgen signaling. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL6255
8 Samples
Download data: TXT
Series
Accession:
GSE28596
ID:
200028596
13.

NKX3-1, a Novel Transcriptional Factor of AR, Promotes Prostate Cancer Cell Survival via RAB3B GTPase-mediated protein trafficking

(Submitter supplied) Androgen receptor (AR) orchestrates an intricate transcriptional regulatory network that governs prostate cancer initiation, development and progression. To understand this network in detail, we generated genome-wide maps of AR occupancy by ChIP-seq in LNCaP cells. We found NKX3-1, an androgen-dependent homeobox protein well-characterized for its role in prostate development and differentiation, being recruited to AR binding sites (ARBS) in response to androgen signaling. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9115
9 Samples
Download data: BED, TXT
Series
Accession:
GSE28264
ID:
200028264
14.

Next Generation Sequencing Facilitates Quantitative Analysis of effect of knockdown of GATA2 on AR binding sites

(Submitter supplied) Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare AR binding activity in LNCaP cells with and without knockdown of GATA2. Methods: LNCaP cells between passage number 32-34 were used for assay. Cells are transfected with GATA2 specific or nonspecific siRNA and ChIP was performed, the ChIP producted was further used to generate library with illumina ChIP-seq kit. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
4 Samples
Download data: WIG
Series
Accession:
GSE52725
ID:
200052725
15.

Dual Role of FoxA1 in Androgen Receptor Binding to Chromatin, Androgen Signaling and Prostate Cancer

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL6947 GPL10558 GPL9052
31 Samples
Download data: BED, SAM, TXT, WIG
Series
Accession:
GSE30624
ID:
200030624
16.

Dual Role of FoxA1 in Androgen Receptor Binding to Chromatin, Androgen Signaling and Prostate Cancer [ChIP_seq, DHS_seq]

(Submitter supplied) We report the dual role of FoxA1 in androgen receptor recruitment to the chromatin of androgen responsive prostate cancer cell line LNCaP-1F5 using ChIP-sequencing. Depletion of FoxA1 reprograms both androgen and glucocorticoid receptor recruitment and subsequent gene expression. The ChIP-seq has been performed using AR, FoxA1, GR, H3K4me2 antibodies. We have also mapped the DNaseI-hypersensitive sites (DHS) using deep sequencing.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9052
15 Samples
Download data: BED, SAM, TXT, WIG
Series
Accession:
GSE30623
ID:
200030623
17.

Dual Role of FoxA1 in Androgen Receptor Binding to Chromatin, Androgen Signaling and Prostate Cancer [Expression Array]

(Submitter supplied) We report the dual role of FoxA1 in androgen receptor recruitment to the chromatin of androgen responsive prostate cancer cell line LNCaP-1F5 using ChIP-sequencing. Depletion of FoxA1 reprograms both androgen and glucocorticoid receptor recruitment and subsequent gene expression. The ChIP-seq has been performed using AR, FoxA1, GR, H3K4me2 antibodies. We have also mapped the DNaseI-hypersensitive sites (DHS) using deep sequencing.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platforms:
GPL6947 GPL10558
16 Samples
Download data: TXT
Series
Accession:
GSE30622
ID:
200030622
18.

Genome-wide RNA-sequencing (RNA-seq) of benign and malignant prostate cell lines without and with androgen (R1881) stimulation.

(Submitter supplied) RNA-seq data were obtained from hTERT immortalized human prostate transit amplifying EP156T cells (+/- 10 nM R1881 for 48 hrs), progeny tumorigenic EPT3-M1 cells recovered from mouse metastatic tumor (+/- 10 nM R1881 for 48 hrs) and the prostate cancer cell lines LNCaP (+/- 10 nM R1881 for 48 hrs), VCaP (+/- 1 nM R1881 for 24 hrs) and 22Rv1 (+/- 1 nM R1881 for 24 hrs) (obtained from the American Type Culture Collection). more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18573
10 Samples
Download data: FPKM_TRACKING
19.

PC3 cells transfected with androgen receptor treated with various concentration of androgens

(Submitter supplied) We compared PC3 cells with or without harboring the wild-AR construct in the growth conditions of 1nM R1881, 10nM R1881 and ethanol (the solvent for R1881). The MOCK control is PC3 cells transfected with the empty vectors.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL570
7 Samples
Download data: CEL
Series
Accession:
GSE15091
ID:
200015091
20.

Persistent androgen receptor-mediated transcription in castration-resistant prostate cancer under androgen-deprived conditions

(Submitter supplied) The androgen receptor (AR) is a ligand-inducible transcription factor that mediates androgen action in target tissues. Upon ligand binding, the AR binds to thousands of genomic loci and activates a cell-type specific gene program. Prostate cancer growth and progression depend on androgen-induced AR signalling. Treatment of advanced prostate cancer through medical or surgical castration leads to initial response and durable remission, but resistance inevitably develops. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL10999 GPL11154
35 Samples
Download data: BEDGRAPH, TXT
Series
Accession:
GSE40050
ID:
200040050
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=5|qty=2|blobid=MCID_673b4aba61a458799d3f97f3|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center