U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

The histone demethylase Kdm3a is essential to progression through differentiation

(Submitter supplied) Histone demethylation has important roles in regulating gene expression and forms part of the epigenetic memory system that regulates cell fate and identity, by still poorly understood mechanisms. Here we examined the role played by the histone demethylase Kdm3a, which demethylates lysine 9 of histone H3, during cellular differentiation. Using F9 mouse embryonal carcinoma cells as a model for progression through terminal differentiation, we showed that Kdm3a is essential to differentiation into parietal endoderm-like (PE) cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6887
12 Samples
Download data: TXT
Series
Accession:
GSE33841
ID:
200033841
2.

The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells

(Submitter supplied) To identify the genes regulated by androgen receptor (AR), we performed the profiling array analysis on the CWR22Rv1 cells and determined the differentially expressed genes upon the knockdown of AR.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL16686
4 Samples
Download data: CEL
Series
Accession:
GSE86547
ID:
200086547
3.

Specific phosphorylation of histone demethylase KDM3A determines target gene expression in response to heat shock

(Submitter supplied) Histone lysine (K) residues, which are modified by methyl- and acetyl-transferases, diversely regulate RNA synthesis. Unlike the ubiquitously activating effect of histone K acetylation, the effects of histone K methylation vary with the number of methyl groups added and with the position of these groups in the histone tails. Histone K demethylases (KDMs) counteract the activity of methyl-transferases and remove methyl group(s) from specific K residues in histones.KDM3A (also known as JHDM2A or JMJD1A) is an H3K9me2/1 demethylase. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL10999
4 Samples
Download data: BED, WIG
Series
Accession:
GSE62309
ID:
200062309
4.

Genome-wide maps of chromatin state and Gene Expression Profiling in HCT116 cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL11154
74 Samples
Download data: BW, TXT
Series
Accession:
GSE108922
ID:
200108922
5.

Gene Expression Profiling of WT and KDM3A Knocked out Cell

(Submitter supplied) We identified KDM3A, a demethylase of histone H3K9me1/2, as a positive regulator for hippo target genes. We found that H3K27ac upregulation is highly correlated with gene activation, but not H3K4me3; and transcription repression of certain TEAD1 target genes, such as BBC3, is important for the pathway function. KDM3A knockout caused upregulation of H3K9me2 mainly on TEAD1-binding enhancers rather than gene bodies, leading to decrease of H3K27ac and TEAD1 binding on enhancers and impaired transcription.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11154
12 Samples
Download data: TXT
Series
Accession:
GSE108921
ID:
200108921
6.

Genome-wide maps of chromatin state in HCT116 cells.

(Submitter supplied) We identified KDM3A, a demethylase of histone H3K9me1/2, as a positive regulator for hippo target genes. We found that H3K27ac upregulation is highly correlated with gene activation, but not H3K4me3; and transcription repression of certain TEAD1 target genes, such as BBC3, is important for the pathway function. KDM3A knockout caused upregulation of H3K9me2 mainly on TEAD1-binding enhancers rather than gene bodies, leading to decrease of H3K27ac and TEAD1 binding on enhancers and impaired transcription. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL11154
62 Samples
Download data: BW
Series
Accession:
GSE108920
ID:
200108920
7.

Vitamin C Induces Specific Demethylation of H3K9me2 in Mouse Embryonic Stem Cells via Kdm3a/b

(Submitter supplied) Histone methylation patterns regulate gene expression and are highly dynamic during development. The erasure of histone methylation is carried out by histone demethylase enzymes. We had previously shown that vitamin C enhances the activity of Tet enzymes in embryonic stem (ES) cells, leading to DNA demethylation and activation of germline genes. We report here that vitamin C induces a remarkably specific demethylation of histone H3 lysine 9 dimethylation (H3K9me2) in ES cells. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
4 Samples
Download data: WIG
Series
Accession:
GSE84009
ID:
200084009
8.

Identification of KDM3A regulated genes in the ER positive breast cancer cell line MCF-7

(Submitter supplied) Using a siRNA screen we identified the histone demethylase enzyme KDM3A as a potential positive regulator of ER signalling in breast cancer. To interrogate the full extent of KDM3A regulation on ER signalling we assessed basal and estrogen (E2)- stimulated global gene expression changes in KDM3A-depleted MCF-7 cells by microarray analysis using the Illumina Human HT12 Version 4 BeadChip array. We identified ER regulated genes affected by KDM3A knockdown and determined that KDM3A is required for ER recruitment to estrogen response elements in the promotors of ER regulated genes. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Dataset:
GDS5662
Platform:
GPL10558
11 Samples
Download data: TXT
Series
Accession:
GSE68918
ID:
200068918
9.
Full record GDS5662

Histone demethylase KDM3A-deficiency effect on estrogen-stimulated breast cancer cells in vitro

Analysis of estrogen receptor (ER)-positive breast cancer cell line MCF-7 depleted for KDM3A (histone lysine demethylase 3A) then treated with estrogen. Histone lysine methylation is an important regulator of transcription. Results provide insight into role of KDM3A in ER signaling in breast cancer.
Organism:
Homo sapiens
Type:
Expression profiling by array, transformed count, 2 agent, 2 genotype/variation sets
Platform:
GPL10558
Series:
GSE68918
11 Samples
Download data
10.

Genome-wide binding sites of Hypoxia inducible factor 1 (HIF1) and histone modifications

(Submitter supplied) We report the high-throughput profilings of HIF1 and histone modifications in human umbilical vein endothelial cells (HUVEC). By obtaining over two billion bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of HUVEC under normoxia and hypoxia. We find that HIF1binds to not only to transcriptional starting sites but also enhancer regions and that HIF1 binding sites were overlapped with lysine 4 trimethylatio, monomethylation and lysine 27 acetylation . more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9052
8 Samples
Download data: BED, WIG
Series
Accession:
GSE39089
ID:
200039089
11.

HIF1 is a master regulator of the adaptive gene expression to hypoxia.

(Submitter supplied) Total 23 samples were derived from [1] HUVEC treated in the absence (0h) or presence of hypoxia (1, 2, 4, 8, 12, and 24 hrs) to determine hypoxia-regulated gene in endothelial cells, [2] control siRNA or HIF1α siRNA transfected HUVEC cells treated in the absence or presence of hypoxia, [3] control siRNA or KDM3A siRNA transfected HUVEC cells treated in the absence or presence of hypoxia, [4] ChIP-seq data for HIF1 binding sites and histone modifications under normoxia and hypoxia in endothelial cells.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL570
15 Samples
Download data: CEL
Series
Accession:
GSE35932
ID:
200035932
12.

Epigenomic profiling reveals the key function of histone H3K9 methylation during tumor transformation process

(Submitter supplied) To understand transcriptome and epigenome profilings alteration during breast cancer initiation and development, we constructed a in vitro breast cancer transformation model. And then, we use mRNA-Seq to uncover differential expression genes during breast cancer transformation process. For epigenomic profilings, we specificly analysis genome wide H3K9me2, H3K9me3,H3K4me3 and H3K27me3 modifications using ChIP-Seq. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL11154
34 Samples
Download data: TXT, WIG
13.

The histone demethylase Jmjd3 sequentially associates with the transcription factors Tbx3 and Eomes to drive endoderm differentiation

(Submitter supplied) Here we show that T-box proteins team up with chromatin modifying enzymes to drive the expression of the key lineage regulator, Eomes during endodermal differentiation of embryonic stem (ES) cells. The Eomes locus is maintained in a transcriptionally poised configuration in ES cells. During early differentiation steps, the ES cell factor Tbx3 associates with the histone demethylase Jmjd3 at the enhancer element of the Eomes locus to allow enhancer-promoter interactions. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
4 Samples
Download data: WIG
Series
Accession:
GSE44764
ID:
200044764
14.

Gene expression profiles of RPMI8226 cells after knockdown of KDM3A and KLF2

(Submitter supplied) Recent studies have implicated KDM3A, which catalyzes removal of H3K9 methylation, is associated with tumorigenesis. However, the biological role of KDM3A in multiple myeloma, has not been delineated. Here we identify KDM3A-KLF2-IRF4 axis dependence in multiple myeloma. We demonstrate that knockdown of KDM3A leads to apoptosis and significant growth inhibition in myeloma cells. Mechanistically, KDM3A directly regulates myeloma cell survival factor IRF4 expression through H3K9 demethylation at its promoter. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL570
12 Samples
Download data: CEL, CHP
Series
Accession:
GSE55667
ID:
200055667
15.

Expression data from precancerous mouse liver under PI3K signaling activation with or without Kdm3a defficiency

(Submitter supplied) Epigenetic gene regulation in various oncogenic pathways is currently an important focus of cancer research. The PI3K pathway plays a pivotal role in hepatocellular carcinoma, but the significance of histone modification in the PI3K pathway-dependent hepatotumorigenesis remains unknown. We used microarrays to investigate the oncogenic gene regulation by histone demethylase Kdm3a under PI3K signaling activation in the liver.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
2 Samples
Download data: CEL, CHP
Series
Accession:
GSE87765
ID:
200087765
16.

ISL1 and JMJD3 synergistically control cardiac differentiation of embryonic stem cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
5 Samples
Download data: BED, XLS
Series
Accession:
GSE79701
ID:
200079701
17.

ISL1 and JMJD3 synergistically control cardiac differentiation of embryonic stem cells (RNA-Seq)

(Submitter supplied) ISL1 is expressed in cardiac progenitor cells and plays critical roles in cardiac lineage differentiation and heart development. Cardiac progenitor cells hold great potential for clinical and translational applications. However the mechanisms underlying ISL1 function in cardiac progenitor cells have not been fully elucidated. Here we uncover a hierarchical role of ISL1 in cardiac progenitor cells, showing that ISL1 directly regulates hundreds of potential downstream targets that are implicated in cardiac differentiation, through an epigenetic mechanism. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: XLS
Series
Accession:
GSE79700
ID:
200079700
18.

ISL1 and JMJD3 synergistically control cardiac differentiation of embryonic stem cells (ChIP-Seq)

(Submitter supplied) ISL1 is expressed in cardiac progenitor cells and plays critical roles in cardiac lineage differentiation and heart development. Cardiac progenitor cells hold great potential for clinical and translational applications. However the mechanisms underlying ISL1 function in cardiac progenitor cells have not been fully elucidated. Here we uncover a hierarchical role of ISL1 in cardiac progenitor cells, showing that ISL1 directly regulates hundreds of potential downstream targets that are implicated in cardiac differentiation, through an epigenetic mechanism. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
3 Samples
Download data: BED, XLS
Series
Accession:
GSE79699
ID:
200079699
19.

JMJD1B target gene screening :JMJD1B is the H3K9 demethylase involved in transcriptional activation of Lmo2 in leukemia

(Submitter supplied) A genome-wide analysis identified a subset of JMJD1B target genes including leukemic oncogene lmo2
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
5 Samples
Download data: TXT
Series
Accession:
GSE30294
ID:
200030294
20.

Define roles of JMJD1B in mediating histone demethylation and gene expression

(Submitter supplied) The arginine or lysine methylation status of histones dynamically changes during many essential cellular processes, particularly during embryonic and hematopoietic stem cell development. The enzymes demethylate methyllysine residues have been well defined, but the enzymes demethylate the methylarginine residues during different cellular processes are unknown. In current study, we demonstrate that JMJD1B is a lysine demethylase for H3K9me2 and an arginine demethylase for H4R3me2s. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17021
35 Samples
Download data: BEDGRAPH, TXT
Series
Accession:
GSE94966
ID:
200094966
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=8|qty=3|blobid=MCID_6738faa1c6023e543c210a39|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center