U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Extended self-renewal and accelerated reprogramming in the absence of Kdm5b

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL13112 GPL11002
18 Samples
Download data: BED, BEDGRAPH, TXT
Series
Accession:
GSE46893
ID:
200046893
2.

Extended self-renewal and accelerated reprogramming in the absence of Kdm5b [RNA-Seq]

(Submitter supplied) ES cell pluripotency is thought to be regulated in part by H3K4 methylation. However, it is unclear how H3K4 demethylation contributes to ES cell function and participates in iPS cell reprogramming. Here, we show that KDM5B, which demethylates H3K4, is important for ES cell differentiation, and presents a barrier to the reprogramming process. Depletion of Kdm5b leads to an extension in the self-renewal of ES cells in the absence of LIF. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL11002 GPL13112
12 Samples
Download data: BED, BEDGRAPH, TXT
Series
Accession:
GSE47124
ID:
200047124
3.

Extended self-renewal and accelerated reprogramming in the absence of Kdm5b [ChIP-Seq]

(Submitter supplied) ES cell pluripotency is thought to be regulated in part by H3K4 methylation. However, it is unclear how H3K4 demethylation contributes to ES cell function and participates in iPS cell reprogramming. Here, we show that KDM5B, which demethylates H3K4, is important for ES cell differentiation, and presents a barrier to the reprogramming process. Depletion of Kdm5b leads to an extension in the self-renewal of ES cells in the absence of LIF. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
6 Samples
Download data: BED, BEDGRAPH
Series
Accession:
GSE47123
ID:
200047123
4.

KDM5B focuses H3K4 methylation near promoters and enhancers during embryonic stem cell self-renewal and differentiation

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL11002 GPL13112
61 Samples
Download data: BED, BEDGRAPH, RPKM
Series
Accession:
GSE53093
ID:
200053093
5.

KDM5B focuses H3K4 methylation near promoters and enhancers during embryonic stem cell self-renewal and differentiation [RNA-Seq]

(Submitter supplied) Pluripotency of embryonic stem (ES) cells is controlled in part by chromatin-modifying factors that regulate histone H3 lysine 4 (H3K4) methylation. However, it remains unclear how H3K4 demethylation contributes to ES cell function. Here, we show that KDM5B, which demethylates lysine 4 of histone H3, co-localizes with H3K4me3 near promoters and enhancers of active genes in ES cells; its depletion leads to spreading of H3K4 methylation into gene bodies and enhancer shores, indicating that KDM5B functions to focus H3K4 methylation at promoters and enhancers. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: BED, BEDGRAPH, RPKM
Series
Accession:
GSE53090
ID:
200053090
6.

KDM5B focuses H3K4 methylation near promoters and enhancers during embryonic stem cell self-renewal and differentiation [ChIP-Seq]

(Submitter supplied) Pluripotency of embryonic stem (ES) cells is controlled in part by chromatin-modifying factors that regulate histone H3 lysine 4 (H3K4) methylation. However, it remains unclear how H3K4 demethylation contributes to ES cell function. Here, we show that KDM5B, which demethylates lysine 4 of histone H3, co-localizes with H3K4me3 near promoters and enhancers of active genes in ES cells; its depletion leads to spreading of H3K4 methylation into gene bodies and enhancer shores, indicating that KDM5B functions to focus H3K4 methylation at promoters and enhancers. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL13112 GPL11002
59 Samples
Download data: BED, BEDGRAPH
Series
Accession:
GSE53087
ID:
200053087
7.

Transcriptional profiles by deep sequencing (RNA-seq) of in vivo-generated mouse iPSCs, in vitro-generated mouse iPSCs, and mouse ESCs

(Submitter supplied) We have generated “reprogrammable” transgenic mice that ubiquitously express the four Yamanaka factors in an inducible manner. Transitory induction of the transgene results in multiple teratomas emerging from a variety of organs, thus indicating that full reprogramming into iPSCs can occur in vivo. By performing bone marrow transplant experiments, we demonstrate that both hematopoietic cells, as well as non-hematopoietic cells can be reprogrammed in vivo. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11002
14 Samples
Download data: FPKM_TRACKING
Series
Accession:
GSE48364
ID:
200048364
8.

H3K4 demethylase KDM5B regulates global dynamics of transcription elongation and alternative splicing in embryonic stem cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL13112
12 Samples
Download data: BEDGRAPH
Series
Accession:
GSE95075
ID:
200095075
9.

H3K4 demethylase KDM5B regulates global dynamics of transcription elongation and alternative splicing in embryonic stem cells [RNA-seq]

(Submitter supplied) Epigenetic regulation of chromatin plays a critical role in controlling embryonic stem (ES) cell self-renewal and pluripotency. However, the roles of histone demethylases and activating histone modifications such as trimethylated histone 3 lysine 4 (H3K4me3) in transcriptional events such as RNA polymerase II (RNAPII) elongation and alternative splicing are largely unknown. In this study, we show that KDM5B, which demethylates H3K4me3, plays an integral role in regulating RNAPII occupancy, transcriptional initiation and elongation, and alternative splicing events in ES cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: BEDGRAPH
Series
Accession:
GSE95074
ID:
200095074
10.

H3K4 demethylase KDM5B regulates global dynamics of transcription elongation and alternative splicing in embryonic stem cells [ChIP-seq]

(Submitter supplied) Epigenetic regulation of chromatin plays a critical role in controlling embryonic stem (ES) cell self-renewal and pluripotency. However, the roles of histone demethylases and activating histone modifications such as trimethylated histone 3 lysine 4 (H3K4me3) in transcriptional events such as RNA polymerase II (RNAPII) elongation and alternative splicing are largely unknown. In this study, we show that KDM5B, which demethylates H3K4me3, plays an integral role in regulating RNAPII occupancy, transcriptional initiation and elongation, and alternative splicing events in ES cells. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
10 Samples
Download data: BEDGRAPH
Series
Accession:
GSE94739
ID:
200094739
11.

C/EBPα poises B cells for rapid reprogramming into iPS cells

(Submitter supplied) C/EBPα induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPα accomplishes these effects is unclear. We now found that transient C/EBPα expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL13112 GPL13912
48 Samples
Download data: BED, TSV, TXT
Series
Accession:
GSE52397
ID:
200052397
12.

C/EBPα poises B cells for rapid reprogramming into iPS cells [RNA-Seq]

(Submitter supplied) C/EBPα induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPα accomplishes these effects is unclear. We now found that transient C/EBPα expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: TSV
Series
Accession:
GSE52396
ID:
200052396
13.

C/EBPα poises B cells for rapid reprogramming into iPS cells [ChIP-Seq]

(Submitter supplied) C/EBPα induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPα accomplishes these effects is unclear. We now found that transient C/EBPα expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: BED
Series
Accession:
GSE52373
ID:
200052373
14.

C/EBPα poises B cells for rapid reprogramming into iPS cells [array]

(Submitter supplied) Somatic cell reprogramming into pluripotent stem cells induced by Oct4, Sox2, Klf4 and Myc (OSKM) occurs at low frequencies and with a considerable delay involving a stochastic phase. In contrast, transdifferentiation of B cells into macrophages induced by C/EBPα is fully efficient and initiated almost immediately. We now discovered that a pulse of C/EBPα in B cell precursors followed by OSKM expression dramatically enhances reprogramming to pluripotency, overcoming the stochastic phase. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL13912
44 Samples
Download data: TXT
Series
Accession:
GSE46321
ID:
200046321
15.

Expression data from iPSCs generated with Yamanaka factors and miR-302 cluster

(Submitter supplied) Baseline gene expression of adipose stem cell derived iPSCs generated by lentiviral Yamanaka 4 factors. We used microarrays to analyze the global gene expression of hACS derived iPSCs with KMOS and KMOS+miR-302.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL570
8 Samples
Download data: CEL
Series
Accession:
GSE37896
ID:
200037896
16.

An integrated systems biology approach identifies positive cofactor 4 as a pluripotency regulatory factor

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Expression profiling by high throughput sequencing
Platforms:
GPL1261 GPL17021
8 Samples
Download data: CEL
Series
Accession:
GSE74156
ID:
200074156
17.

Expression data from three types of spermatogonial stem cells.

(Submitter supplied) Multipotent spermatogonial stem cells (mSSCs) derived from SSCs are a potential new source of individualized pluripotent cells in regenerate medicine such as ESCs. We hypothesized that the culture-induced reprogramming of SSCs was mediated by a mechanism different from that of iPS, and was due to up-regulation of specific pluripotency-related genes during cultivation. Through a comparative analysis of expression profile data, we try to find cell reprogramming candidate factors from mouse spermatogonial stem cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
6 Samples
Download data: CEL
Series
Accession:
GSE74151
ID:
200074151
18.

RNA sequencing analysis in WT and Pc4-OE mESC lines.

(Submitter supplied) Spermatogonial stem cells (SSCs) can spontaneously dedifferentiate into embryonic stem cell (ESC)-like cells, which are designated as multipotent SSCs (mSSCs), without ectopic expression of reprogramming factors. SSCs express key OSKM reprogramming factors at some levels, and do not require ectopic expression of any gene for the acquisition of pluripotency during reprogramming to mSSCs. Therefore, we reasoned that additional factors are required to regulate SSC reprogramming. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
2 Samples
Download data: TXT
Series
Accession:
GSE74149
ID:
200074149
19.

NCoR/SMRT co-repressors cooperate with c-MYC to create an epigenetic barrier to somatic cell reprogramming

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
25 Samples
Download data: BED, BW
Series
Accession:
GSE70740
ID:
200070740
20.

NCoR/SMRT co-repressors cooperate with c-MYC to create an epigenetic barrier to somatic cell reprogramming [RNA-seq]

(Submitter supplied) Changing the somatic cell transcriptome to a pluripotent state using exogenous reprogramming factors needs transcriptional co-regulators that help activate or suppress gene expression and rewrite the epigenome. Here, we show that reprogramming-specific engagement of the NCoR/SMRT co-repressor complex at key pluripotency loci creates an epigenetic block to reprogramming. HDAC3 executes the repressive function of NCoR/SMRT in reprogramming by inducing histone deacetylation at these loci. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
12 Samples
Download data: TXT
Series
Accession:
GSE70738
ID:
200070738
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=38|qty=3|blobid=MCID_6729586e64a58614145bdd43|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center