U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

OCT4 and SOX2 Work as Transcriptional Activators in Reprogramming Human Fibroblasts

(Submitter supplied) SOX2 and OCT4, in conjunction with KLF4 and cMYC, are sufficient to reprogram human fibroblasts to induced pluripotent stem cells (iPSCs), but it is unclear if they function as transcriptional activators or as repressors. We now show that, like OCT4, SOX2 functions as a transcriptional activator. We substituted SOX2-VP16 (a strong activator) for wild-type (WT) SOX2, and we saw an increase in the efficiency and rate of reprogramming, whereas the SOX2-HP1 fusion (a strong repressor) eliminated reprogramming. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
11 Samples
Download data: TXT
Series
Accession:
GSE81891
ID:
200081891
2.

OCT4 and SOX2 Work as Transcriptional Activators in Reprogramming Human Fibroblasts

(Submitter supplied) SOX2 and OCT4, in conjunction with KLF4 and cMYC, are sufficient to reprogram human fibroblasts to induced pluripotent stem cells (iPSCs), but it is unclear if they function as transcriptional activators or as repressors. We now show that, like OCT4, SOX2 functions as a transcriptional activator. We substituted SOX2-VP16 (a strong activator) for wild-type (WT) SOX2, and we saw an increase in the efficiency and rate of reprogramming, whereas the SOX2-HP1 fusion (a strong repressor) eliminated reprogramming. more...
Organism:
Homo sapiens
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL16791 GPL10558
95 Samples
Download data
Series
Accession:
GSE81900
ID:
200081900
3.

OCT4 and SOX2 Work as Transcriptional Activators in Reprogramming Human Fibroblasts

(Submitter supplied) SOX2 and OCT4, in conjunction with KLF4 and cMYC, are sufficient to reprogram human fibroblasts to induced pluripotent stem cells (iPSCs), but it is unclear if they function as transcriptional activators or as repressors. We now show that, like OCT4, SOX2 functions as a transcriptional activator. We substituted SOX2-VP16 (a strong activator) for wild-type (WT) SOX2, and we saw an increase in the efficiency and rate of reprogramming, whereas the SOX2-HP1 fusion (a strong repressor) eliminated reprogramming. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
84 Samples
Download data: PDF, TXT
Series
Accession:
GSE81899
ID:
200081899
4.

Transcription factor NKX3-1 is required for reprogramming to pluripotency and can replace OCT4 in mouse and human iPSC induction

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens; Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
4 related Platforms
32 Samples
Download data: TXT
Series
Accession:
GSE103536
ID:
200103536
5.

Transcription factor NKX3-1 is required for reprogramming to pluripotency and can replace OCT4 in mouse and human iPSC induction [ATAC-seq]

(Submitter supplied) Resolution of early molecular events preceding endogenous OCT4 activation is critical to understanding the mechanism of reprogramming somatic cells to induced pluripotent stem cells (iPSCs), yet capturing transient regulators at the onset of reprogramming is difficult in heterogeneous populations of asynchronously reprogramming fibroblasts following four-factor transduction. To address this need, we used a heterokaryon system to identify an early and transiently expressed homeobox transcription factor, NKX3-1. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
7 Samples
Download data: BED
Series
Accession:
GSE103535
ID:
200103535
6.

Transcription factor NKX3-1 is required for reprogramming to pluripotency and can replace OCT4 in mouse and human iPSC induction [RNA-seq]

(Submitter supplied) Resolution of early molecular events preceding endogenous OCT4 activation is critical to understanding the mechanism of reprogramming somatic cells to induced pluripotent stem cells (iPSCs), yet capturing transient regulators at the onset of reprogramming is difficult in heterogeneous populations of asynchronously reprogramming fibroblasts following four-factor transduction. To address this need, we used a heterokaryon system to identify an early and transiently expressed homeobox transcription factor, NKX3-1. more...
Organism:
Mus musculus; Homo sapiens
Type:
Expression profiling by high throughput sequencing
4 related Platforms
25 Samples
Download data: TXT
Series
Accession:
GSE103509
ID:
200103509
7.

Global transcriptome profiling of Oct4/Klf4/Sox2 (3Factor, 3F) + IL6 iPS clones derived from mouse embryonic fibroblasts.

(Submitter supplied) We used heterokaryon cell fusion based reprogramming and identified the cytokine IL6 as a potential regulator of reprogramming to pluripotency. We generated iPS clones using the four reprogramming factors (4F) Oct4, Klf4, Sox2, and c-Myc. In addition, iPS clones were generated using only three factors (3F: Oct4, Klf4, amd Sox2) with the addition of the cytokine IL6 to reprogramming culture conditions. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
8 Samples
Download data: TXT
Series
Accession:
GSE46104
ID:
200046104
8.

Gene expression profiles of induced pluripotent stem cells (iPSCs) and skin fibroblasts from orangutans

(Submitter supplied) Orangutans are an endangered species whose natural habitats are restricted to the Southeast Asian islands of Borneo and Sumatra. For potential species conservation and functional genomics studies, we derived induced pluripotent stem cells (iPSCs) from cryopreserved skin fibroblasts obtained from captive orangutans. We report the gene expression profiles of iPSCs and skin fibroblasts derived from orangtuans.
Organism:
Homo sapiens; Pongo abelii
Type:
Expression profiling by array
Platform:
GPL571
8 Samples
Download data: CEL
Series
Accession:
GSE69603
ID:
200069603
9.

Global gene expression analyses of paused iPSCs

(Submitter supplied) Low Klf4 expression reproducibly gives rise to a homogeneous population of partially reprogrammed iPSCs. Upregulation of Klf4 allows these cells to resume reprogramming, indicating that they are paused iPSCs that remain on the path towards pluripotency. Paused iPSCs with different Klf4 expression levels remain at distinct intermediate stages of reprogramming.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
24 Samples
Download data: TXT
Series
Accession:
GSE56406
ID:
200056406
10.

Expression data from iPSCs generated with Yamanaka factors and miR-302 cluster

(Submitter supplied) Baseline gene expression of adipose stem cell derived iPSCs generated by lentiviral Yamanaka 4 factors. We used microarrays to analyze the global gene expression of hACS derived iPSCs with KMOS and KMOS+miR-302.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL570
8 Samples
Download data: CEL
Series
Accession:
GSE37896
ID:
200037896
11.

Excluding Oct4 from Yamanaka cocktail unleashes the developmental potential of iPSCs

(Submitter supplied) Oct4 is widely considered the most important among the four Yamanaka reprogramming factors. Here we show that the combination of Sox2, Klf4, and cMyc (SKM) suffices for reprogramming mouse somatic cells to induced pluripotent stem cells (iPSCs). Simultaneous induction of Sox2 and cMyc in fibroblasts triggers immediate retroviral silencing, which explains the discrepancy with previous studies that attempted but failed to generate iPSCs without Oct4 using retroviral vectors. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL21103 GPL21493
86 Samples
Download data: XLSX
Series
Accession:
GSE137001
ID:
200137001
12.

The Nuclear Receptor Nr5a2 can replace Oct4 in the Reprogramming of Murine Somatic Cells to Pluripotent Cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6105
32 Samples
Download data
Series
Accession:
GSE19023
ID:
200019023
13.

Global gene expression analysis of OSKM / N2SKM- infected MEFs over time course

(Submitter supplied) We used microarrays to detail the global gene expression profiles of OSKM and N2OSKM-infected MEFs over a time course (3, 7, 11 dpi).
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6105
32 Samples
Download data: TXT
Series
Accession:
GSE19022
ID:
200019022
14.

Global gene expression analyses of the Nr5a2 reprogrammed cells

(Submitter supplied) We used microarrays to detail the global programme of gene expression of ESCs, Nr5a2 reprogrammed iPSC lines and MEFs.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6105
32 Samples
Download data: TXT
Series
Accession:
GSE19021
ID:
200019021
15.

Genome-wide mapping of Nr5a2 in mouse embryonic stem cells

(Submitter supplied) Nr5a2 (also known as liver receptor homolog-1, Lrh-1) has been shown to bind both the proximal enhancer and proximal promoter regions of Pou5f1 and regulate Pou5f1 in the epiblast stage of mouse embryonic development (Gu et al., 2005). Nr5a2-null embryos display a loss of Oct4 expression in the epiblasts (Gu et al., 2005) and die between E6.5 and E7.5 (Gu et al., 2005; Pare et al., 2004). To identify the targets of Nr5a2, we generated a stable ES cell-line that expresses HA-tagged Nr5a2. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9185
2 Samples
Download data: BED, TXT
Series
Accession:
GSE19019
ID:
200019019
16.

Expression analysis of stepwise induction of iPS cells

(Submitter supplied) We were able to achieve an initial stable intermediate phase by the transduction of Oct4, Klf4, and c-Myc. Furthermore, over-expression of Sox2 in these intermediate stage cells leads to final iPS cell phase. After examining the gene expression profiles from the initial to final iPS cell phases, we have identified Sox2 downstream genes important for iPS cell induction.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
16 Samples
Download data: TXT
Series
Accession:
GSE28197
ID:
200028197
17.

Gene expression profiles of OSKH iPSCs, OSK iPSCs and ESC

(Submitter supplied) Induced pluripotent stem cell (iPSC) generation is similar to somatic cell nuclear transfer in oocytes, and this procedure can be used to generate ESCs, which suggests the contribution of oocyte-specific constituents. Here, we show that the mammalian oocyte-specific linker histone H1foo has beneficial effects on iPSC generation. Induction of H1foo with Oct4, Sox2, and Klf4 (OSKH) significantly enhanced the efficiency of iPSC generation. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL10787
8 Samples
Download data: TXT
Series
Accession:
GSE79515
ID:
200079515
18.

Direct Reprogramming of Fibroblasts into Epiblast Stem Cells

(Submitter supplied) Embryonic stem cells (ESCs), which are derived from the primitive ectoderm of pre-implantation blastocysts, are pluripotent cells and can thus contribute to the formation of all somatic cell lineages in chimeric animals. Similarly, epiblast stem cells (EpiSCs), which are derived from epiblast tissue of post-implantation embryos, are also pluripotent and can give rise to derivatives of all three germ layers in teratoma assays. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
24 Samples
Download data: TXT
Series
Accession:
GSE21516
ID:
200021516
19.

OSKM induce extraembryonic endoderm stem (iXEN) cells in parallel to iPS cells

(Submitter supplied) While the reprogramming factors OCT4, SOX2, KLF4, and MYC (OSKM) can reactivate the pluripotency network in terminally differentiated cells, they also regulate expression of non-pluripotency genes in other contexts, such as the mouse primitive endoderm. The primitive endoderm is an extraembryonic lineage established alongside the pluripotent epiblast in the blastocyst, and is the progenitor pool for extraembryonic endoderm stem (XEN) cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
17 Samples
Download data: TXT
Series
Accession:
GSE77550
ID:
200077550
20.

An integrated systems biology approach identifies positive cofactor 4 as a pluripotency regulatory factor

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Expression profiling by high throughput sequencing
Platforms:
GPL17021 GPL1261
8 Samples
Download data: CEL
Series
Accession:
GSE74156
ID:
200074156
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=2|qty=4|blobid=MCID_665ccc80b6fda621992f90e6|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Support Center