U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

HDAC1/2 are required for microglia identity during development, homeostasis and neurodegeneration in a context-dependent manner [ChIP inducible knockout on FAD background]

(Submitter supplied) Microglia as tissue macrophages of the central nervous system (CNS) provide immunological defense and contribute to the establishment and maintenance of CNS homeostasis. Several transcription factors have been described that regulate microglia development and its steady state form, however little is known about the epigenetic signals that control microglia function in vivo. Here, we employed constitutive and inducible mutagenesis in microglia to delete two class I histone deacetylases (HDACs), Hdac1 and 2. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL21493
18 Samples
Download data: BW
Series
Accession:
GSE110166
ID:
200110166
2.

HDAC1/2 are required for microglia identity during development, homeostasis and neurodegeneration in a context-dependent manner [ChIP-seq constitutive knockout]

(Submitter supplied) Microglia as tissue macrophages of the central nervous system (CNS) provide immunological defense and contribute to the establishment and maintenance of CNS homeostasis. Several transcription factors have been described that regulate microglia development and its steady state form, however little is known about the epigenetic signals that control microglia function in vivo. Here, we employed constitutive and inducible mutagenesis in microglia to delete two class I histone deacetylases (HDACs), Hdac1 and 2. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
17 Samples
Download data: BW
Series
Accession:
GSE107436
ID:
200107436
3.

Knockout of HDAC1 and HDAC2 in Microglia

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
4 related Platforms
94 Samples
Download data: BW, CEL
Series
Accession:
GSE98823
ID:
200098823
4.

Constitutive and Tamoxifen inducible knockout of HDAC1 and HDAC2 in Microglia

(Submitter supplied) Hdac1 and 2 are important regulators of developmental processes. In this study we created microglia specific compound Hdac1 and Hdac2 knock out mice. Pre-natal ablation of both Hdac1 and 2 from microglia leads to reduced cell number and altered cell morphology. To investigate how Hdac1 and 2 knock out in microglia alters cellular gene expression profile we carried out RNA-seq analysis at different time points.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL15103
50 Samples
Download data: TXT
Series
Accession:
GSE98822
ID:
200098822
5.

Expression data from Hdac1 and 2 knock out microglia in 5X familial Alzheimer's disease (FAD) background

(Submitter supplied) Epigenetic alterations has been implicated in the pathology of several neurodegenerative diseases. To investigate the role of microglial Hdac1 and 2 in the pathogenesis of Alzheimer's disease (AD), we created microglia specific compound Hdac1 and Hdac2 knock out mice in 5X FAD background. Genetic ablation of Hdac1 and 2 from microglia reduced amyloid plaque burden and improved spatial learning and memory function. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL16570
9 Samples
Download data: CEL
Series
Accession:
GSE96622
ID:
200096622
6.

The acetylome regulators Hdac1 and Hdac2 differently modulate intestinal epithelial cell dependent homeostatic responses in experimental colitis

(Submitter supplied) Histone deacetylases (Hdac) remove acetyl groups from proteins, influencing global and specific gene expression. Hdacs control inflammation, as shown by Hdac inhibitor-dependent protection from DSS-induced murine colitis. While tissue-specific Hdac knockouts show redundant and specific functions, little is known of their intestinal epithelial cell (IEC) role. We have shown previously that dual Hdac1/Hdac2 IEC-specific loss disrupts cell proliferation and determination, with decreased secretory cell numbers and altered barrier function. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
6 Samples
Download data: CEL
Series
Accession:
GSE54785
ID:
200054785
7.

The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases VI

(Submitter supplied) Microglia play a pivotal role in the maintenance of brain homeostasis, but lose their homeostatic function during the course of neurodegenerative disorders. We identified a specific APOE-dependent molecular signature in microglia isolated from mouse models of amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (SOD1, EAE and APP-PS1) and in microglia surrounding neuritic A-plaques in human Alzheimer’s disease brain. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
39 Samples
Download data: TXT
Series
Accession:
GSE102564
ID:
200102564
8.

The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases V

(Submitter supplied) Microglia play a pivotal role in the maintenance of brain homeostasis, but lose their homeostatic function during the course of neurodegenerative disorders. We identified a specific APOE-dependent molecular signature in microglia isolated from mouse models of amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (SOD1, EAE and APP-PS1) and in microglia surrounding neuritic A-plaques in human Alzheimer’s disease brain. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
18 Samples
Download data: TXT
Series
Accession:
GSE102563
ID:
200102563
9.

The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases IV

(Submitter supplied) Microglia play a pivotal role in the maintenance of brain homeostasis, but lose their homeostatic function during the course of neurodegenerative disorders. We identified a specific APOE-dependent molecular signature in microglia isolated from mouse models of amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (SOD1, EAE and APP-PS1) and in microglia surrounding neuritic A-plaques in human Alzheimer’s disease brain. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
20 Samples
Download data: TXT
Series
Accession:
GSE102562
ID:
200102562
10.

The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Expression profiling by high throughput sequencing
4 related Platforms
246 Samples
Download data: RCC
Series
Accession:
GSE101689
ID:
200101689
11.

The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases III

(Submitter supplied) Microglia play a pivotal role in the maintenance of brain homeostasis, but lose their homeostatic function during the course of neurodegenerative disorders. We identified a specific APOE-dependent molecular signature in microglia isolated from mouse models of amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (SOD1, EAE and APP-PS1) and in microglia surrounding neuritic A-plaques in human Alzheimer’s disease brain. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL23813
50 Samples
Download data: RCC
Series
Accession:
GSE101688
ID:
200101688
12.

The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases II

(Submitter supplied) Microglia play a pivotal role in the maintenance of brain homeostasis, but lose their homeostatic function during the course of neurodegenerative disorders. We identified a specific APOE-dependent molecular signature in microglia isolated from mouse models of amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (SOD1, EAE and APP-PS1) and in microglia surrounding neuritic A-plaques in human Alzheimer’s disease brain. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL23812
56 Samples
Download data: RCC
Series
Accession:
GSE101687
ID:
200101687
13.

The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases I

(Submitter supplied) Microglia play a pivotal role in the maintenance of brain homeostasis, but lose their homeostatic function during the course of neurodegenerative disorders. We identified a specific APOE-dependent molecular signature in microglia isolated from mouse models of amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (SOD1, EAE and APP-PS1) and in microglia surrounding neuritic A-plaques in human Alzheimer’s disease brain. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL23811
63 Samples
Download data: RCC
Series
Accession:
GSE101686
ID:
200101686
14.

Expression data from intestine of HDAC1 and HDAC2 conditionally mutated mice

(Submitter supplied) Acetylation and deacetylation of histones and other proteins depend on the opposing activities of histone acetyltransferases and histone deacetylases (HDACs), leading to either positive or negative gene expression changes. The use of HDAC inhibitors (HDACi) has uncovered a role for HDACs in the control of proliferation, apoptosis and inflammation. However, little is known of the roles of specific HDACs in intestinal epithelial cells (IEC). more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
6 Samples
Download data: CEL
Series
Accession:
GSE47745
ID:
200047745
15.

Kidney cell type specific changes in the chromatin and transcriptome landscapes following epithelial Hdac1 and Hdac2 knockdown

(Submitter supplied) We report the chromatin accessibility with knock down of HDAC1 and HDAC2 from the epithelium of the adult mouse kidney
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19057
4 Samples
Download data: BED, CSV, H5, TBI, TSV
Series
Accession:
GSE181557
ID:
200181557
16.

Mouse embryonic kidneys (E13.5): mutant (UB HDAC1,2-/-) vs. wild type

(Submitter supplied) Transcriptional profiling of mouse embryonic kidneys (E13.5) comparing UB HDAC1,2-/- kidneys with wild type kidneys. Studies in our lab showed that histone deacetylase 1 (HDAC1) and 2 (HDAC2) perform redundant, yet essential functions in the developing mouse ureteric bud (UB) tissue. Double deletion of HDAC1 and HDAC2 in the UB results in impaired UB branching morphogenesis, followed by severe kidney dysgenesis. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL4134
8 Samples
Download data: TXT
Series
Accession:
GSE35432
ID:
200035432
17.

Expression data from primary MEF lacking either HDAC1, HDAC2 or both

(Submitter supplied) Previously published data suggested some redundant functions between HDAC1 and HDAC2 in mouse. To test this hypothesis, we used microarrays to have a genome wide analysis at the transcription level of primary MEFs lacking HDAC1, HDAC2.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
15 Samples
Download data: CEL
Series
Accession:
GSE20100
ID:
200020100
18.

Expression data from jejunum IEC deleted for both HDAC1 and HDAC2

(Submitter supplied) Both HDAC1 and HDAC2 are epigenetic erasers that drive specific and redundant gene expression patterns, in part by removing acetyl groups on histones. Deletion of these Hdac in intestinal epithelial cell (IEC) in vivo alters intestinal homeostasis, dependent on the Hdac deleted and the level of expression of both. To determine the intrinsic specific IEC function of HDAC1 and HDAC2, we have performed transcriptomic and quantitative proteomic approaches on IEC-deficient for Hdac1 and Hdac2. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21103
6 Samples
Download data: TXT
Series
Accession:
GSE158522
ID:
200158522
19.

Dosage dependent tumor suppression by histone deacetylase 1 and 2 by regulation of Myc collaborating genes and p53 function

(Submitter supplied) comparative genome hybridisation of Hdac1/2 cKO lymphomas and matched normal tissue Histone deacetylases (HDACs) are epigenetic erasers of lysine-acetyl marks. Inhibition of HDACs using small molecule inhibitors (HDACi) is a potential strategy in the treatment of various diseases and is approved for treating hematological malignancies. Harnessing the therapeutic potential of HDACi requires knowledge of HDAC-function in vivo. more...
Organism:
Mus musculus
Type:
Genome variation profiling by genome tiling array
Platform:
GPL13924
6 Samples
Download data: PAIR, TXT
Series
Accession:
GSE43407
ID:
200043407
20.

FACS-sorted Six2-positive nephron progenitor cells at embryonic day 15.5: wildtype (WT) vs. conditional HDAC1&2-null (MUT)

(Submitter supplied) Transcriptional profiling of FACS-sorted Six2-positive nephron progenitor cells from Six2CreEGFP mice without (WT) or with (MUT) homozygously floxed HDAC1 and HDAC2 alleles at the age of embryonic day 15.5. This experiment aimed to uncover the genome-wide alternation in gene expression resulting from the removal of HDAC1&2 in the nephron progenitor population and successive changes to the series of events in kidney development.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL13912
8 Samples
Download data: TXT
Series
Accession:
GSE84305
ID:
200084305
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=3|qty=2|blobid=MCID_672efb346fe43f52cd60e1e1|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center