U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Single cell ATAC-seq of cardiomyocytes from neonatal mouse hearts after injury

(Submitter supplied) The adult mammalian heart is incapable of regeneration following injury. In contrast, the neonatal mouse heart has a transient ability to regenerate, however the molecular mechanism that mediates this regenerative response is not fully understood. Here, by single-nucleus RNA sequencing we map the transcriptome landscape of cardiomyocytes in neonatal mouse hearts at healthy, regenerative, and remodeling conditions. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19057
1 Sample
Download data: BED, CSV, H5, MTX, TBI, TSV
Series
Accession:
GSE142365
ID:
200142365
2.

Dynamic transcriptional responses to injury of regenerative and non-regenerative cardiomyocytes revealed by single-nucleus RNA sequencing

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Rattus norvegicus; Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL19057 GPL20084
18 Samples
Download data: BED, CSV, H5, MTX, TBI, TSV
Series
Accession:
GSE142366
ID:
200142366
3.

Transcriptome profiling of neonatal rat ventricular cardiomyocytes overexpressing NFYa or NFE2L1

(Submitter supplied) The adult mammalian heart is incapable of regeneration following injury. In contrast, the neonatal mouse heart has a transient ability to regenerate, however the molecular mechanism that mediates this regenerative response is not fully understood. Here, by single-nucleus RNA sequencing we map the transcriptome landscape of cardiomyocytes in neonatal mouse hearts at healthy, regenerative, and remodeling conditions. more...
Organism:
Rattus norvegicus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20084
9 Samples
Download data: TXT
Series
Accession:
GSE142364
ID:
200142364
4.

Single nucleus RNA-seq of cardiomyocytes from neonatal mouse hearts after injury

(Submitter supplied) The adult mammalian heart is incapable of regeneration following injury. In contrast, the neonatal mouse heart can efficiently regenerate during the first week of life. The molecular mechanisms that mediate the regenerative response and its blockade in later life are not understood. Here, by single-nucleus RNA sequencing, we map the dynamic transcriptional landscape of five distinct cardiomyocyte populations in healthy, injured and regenerating mouse hearts. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
8 Samples
Download data: MTX, TSV, TXT
Series
Accession:
GSE130699
ID:
200130699
5.

Multi-cellular Transcriptional Profiling Reveals an Epigenetic Barrier to Adult Heart Regeneration

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL17021
18 Samples
Download data
Series
Accession:
GSE95764
ID:
200095764
6.

Multi-cellular Transcriptional Profiling Reveals an Epigenetic Barrier to Adult Heart Regeneration [ATAC-Seq]

(Submitter supplied) Background - The inability of the adult mammalian heart to regenerate following injury represents a major barrier in cardiovascular medicine. In contrast, the neonatal mammalian heart retains a transient capacity for regeneration, which is lost shortly after birth. Defining the molecular mechanisms that govern regenerative capacity in the neonatal period remains a central goal in cardiac biology. Here, we construct a transcriptional atlas of multiple cardiac cell populations, which enables comparative analyses of the regenerative (neonatal) versus non-regenerative (adult) state for the first time. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17021
9 Samples
Download data: TXT
Series
Accession:
GSE95763
ID:
200095763
7.

Multi-cellular Transcriptional Profiling Reveals an Epigenetic Barrier to Adult Heart Regeneration [RNA-Seq]

(Submitter supplied) Background - The inability of the adult mammalian heart to regenerate following injury represents a major barrier in cardiovascular medicine. In contrast, the neonatal mammalian heart retains a transient capacity for regeneration, which is lost shortly after birth. Defining the molecular mechanisms that govern regenerative capacity in the neonatal period remains a central goal in cardiac biology. Here, we construct a transcriptional atlas of multiple cardiac cell populations, which enables comparative analyses of the regenerative (neonatal) versus non-regenerative (adult) state for the first time. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
9 Samples
Download data: TXT
Series
Accession:
GSE95762
ID:
200095762
8.

Multicellular Transcriptional Analysis of Mammalian Heart Regeneration

(Submitter supplied) The inability of the adult mammalian heart to regenerate following injury represents a major barrier in cardiovascular medicine. In contrast, the neonatal mammalian heart retains a transient capacity for regeneration, which is lost shortly after birth. Defining the molecular mechanisms that govern regenerative capacity in the neonatal period remains a central goal in cardiac biology. Here, we construct a transcriptional atlas of multiple cardiac cell populations, which enables comparative analyses of the regenerative (neonatal) versus non-regenerative (adult) state for the first time. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
64 Samples
Download data: TXT, XLSX
Series
Accession:
GSE95755
ID:
200095755
9.

Cell-type-specific gene regulatory networks underlying murine neonatal heart regeneration at single-cell resolution

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19057
12 Samples
Download data: MTX, TSV
Series
Accession:
GSE153481
ID:
200153481
10.

Single cell RNA-seq of neonatal heart regeneration

(Submitter supplied) The adult mammalian heart has limited capacity for regeneration following injury, whereas the neonatal heart can readily regenerate within a short period after birth. Neonatal heart regeneration is orchestrated by multiple cell types intrinsic to the heart, as well as immune cells that infiltrate the heart after injury. To elucidate the transcriptional responses of the different cellular components of the mouse heart following injury, we performed single cell RNA-sequencing on neonatal hearts at various time points following myocardial infarction, and coupled the results with bulk tissue RNA-sequencing data collected at the same time points. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
8 Samples
Download data: MTX, TSV
Series
Accession:
GSE153480
ID:
200153480
11.

Single cell ATAC-seq of neonatal heart regeneration

(Submitter supplied) The adult mammalian heart has limited capacity for regeneration following injury, whereas the neonatal heart can readily regenerate within a short period after birth. Neonatal heart regeneration is orchestrated by multiple cell types intrinsic to the heart, as well as immune cells that infiltrate the heart after injury. To elucidate the transcriptional responses of the different cellular components of the mouse heart following injury, we performed single cell RNA-sequencing on neonatal hearts at various time points following myocardial infarction, and coupled the results with bulk tissue RNA-sequencing data collected at the same time points. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19057
4 Samples
Download data: BED, CSV, H5, MTX, TBI, TSV, TXT
Series
Accession:
GSE153479
ID:
200153479
12.

Mechanistic basis of neonatal heart regeneration revealed by transcriptome and histone modification profiling

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19057
108 Samples
Download data: BW
Series
Accession:
GSE123868
ID:
200123868
13.

Epigenome profiling of neonatal heart regeneration

(Submitter supplied) Background: The adult mammalian heart has limited capacity for regeneration following injury, whereas the neonatal heart can readily regenerate within a short period after birth. To uncover the molecular mechanisms underlying neonatal heart regeneration, we compared the transcriptomes and epigenomes of regenerative and non-regenerative mouse hearts over a 7-day time period following myocardial infarction. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19057
72 Samples
Download data: BW
Series
Accession:
GSE123867
ID:
200123867
14.

Transcriptome profiling of neonatal heart regeneration

(Submitter supplied) Background: The adult mammalian heart has limited capacity for regeneration following injury, whereas the neonatal heart can readily regenerate within a short period after birth. To uncover the molecular mechanisms underlying neonatal heart regeneration, we compared the transcriptomes and epigenomes of regenerative and non-regenerative mouse hearts over a 7-day time period following myocardial infarction. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
36 Samples
Download data: TXT
Series
Accession:
GSE123863
ID:
200123863
15.

Transcription factor NFYa controls cardiomyocyte metabolism and proliferation during fetal heart development

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus; Rattus norvegicus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Other
Platforms:
GPL20084 GPL19057
12 Samples
Download data: BW, H5, PNG
Series
Accession:
GSE232963
ID:
200232963
16.

Transcription factor NFYa controls cardiomyocyte metabolism and proliferation during fetal heart development [Visium]

(Submitter supplied) Cardiomyocytes are highly metabolic cells responsible for generating the contractile force that drives heart function. During fetal development and regeneration, these cells undergo active division but lose their proliferation activity in the adult heart. The mechanisms that coordinate their metabolism and proliferation are not fully understood. Here, we study the developmental functions of the transcription factor NFYa, which we previously identified from regenerating cardiomyocytes. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL19057
2 Samples
Download data: H5, PNG
Series
Accession:
GSE232962
ID:
200232962
17.

Transcription factor NFYa controls cardiomyocyte metabolism and proliferation during fetal heart development [Multiome]

(Submitter supplied) Cardiomyocytes are highly metabolic cells responsible for generating the contractile force that drives heart function. During fetal development and regeneration, these cells undergo active division but lose their proliferation activity in the adult heart. The mechanisms that coordinate their metabolism and proliferation are not fully understood. Here, we study the developmental functions of the transcription factor NFYa, which we previously identified from regenerating cardiomyocytes. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19057
4 Samples
Download data: BED, H5, TBI, TSV
Series
Accession:
GSE232961
ID:
200232961
18.

Transcription factor NFYa controls cardiomyocyte metabolism and proliferation during fetal heart development [ChIP-seq]

(Submitter supplied) Cardiomyocytes are highly metabolic cells responsible for generating the contractile force that drives heart function. During fetal development and regeneration, these cells undergo active division but lose their proliferation activity in the adult heart. The mechanisms that coordinate their metabolism and proliferation are not fully understood. Here, we study the developmental functions of the transcription factor NFYa, which we previously identified from regenerating cardiomyocytes. more...
Organism:
Rattus norvegicus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL20084
6 Samples
Download data: BW
Series
Accession:
GSE232960
ID:
200232960
19.

Transcriptional Reversion of Cardiac Myocyte Fate During Mammalian Cardiac Regeneration.

(Submitter supplied) Rationale: Neonatal mice have the capacity to regenerate their hearts in response to injury, but this potential is lost after the first week of life. The transcriptional changes that underpin mammalian cardiac regeneration have not been fully characterized at the molecular level. Objective: The objectives of our study were to determine if myocytes revert the transcriptional phenotype to a less differentiated state during regeneration and to systematically interrogate the transcriptional data to identify and validate potential regulators of this process. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL17021 GPL13112
36 Samples
Download data: TXT
Series
Accession:
GSE64403
ID:
200064403
20.

RNA sequencing analyses of grl/hey2-overexpressing hearts and control hearts, as well as grl/hey2-deficient hearts and wild-type hearts following ventricular resection at 7 dpa

(Submitter supplied) As Grl/Hey2 directly binds DNA through E box motifs and mediates transcription repression, we aim to gain insights into potential target genes of Grl/Hey2 during heart regeneration. We performed RNA-seq analyses using total RNAs collected from 4-HT-treated Tg(cmlc2:creER;cmlc2:nRSGG) hearts and Tg(cmlc2:nRSGG) control hearts, as well as grl5nt-/- mutant hearts and wild-type hearts following ventricular resection at 7 dpa. more...
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL23085
12 Samples
Download data: XLS, XLSX
Series
Accession:
GSE129499
ID:
200129499
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=4|blobid=MCID_67254e18ffa1095b2051ea76|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center