Wilson disease- MedGen UID:
- 42426
- •Concept ID:
- C0019202
- •
- Disease or Syndrome
Wilson disease is a disorder of copper metabolism that can present with hepatic, neurologic, or psychiatric disturbances, or a combination of these, in individuals ranging from age three years to older than 50 years; symptoms vary among and within families. Liver disease includes recurrent jaundice, simple acute self-limited hepatitis-like illness, autoimmune-type hepatitis, fulminant hepatic failure, or chronic liver disease. Neurologic presentations include movement disorders (tremors, poor coordination, loss of fine-motor control, chorea, choreoathetosis) or rigid dystonia (mask-like facies, rigidity, gait disturbance, pseudobulbar involvement). Psychiatric disturbance includes depression, neurotic behaviors, disorganization of personality, and, occasionally, intellectual deterioration. Kayser-Fleischer rings, frequently present, result from copper deposition in Descemet's membrane of the cornea and reflect a high degree of copper storage in the body.
Lowe syndrome- MedGen UID:
- 18145
- •Concept ID:
- C0028860
- •
- Disease or Syndrome
Lowe syndrome (oculocerebrorenal syndrome) is characterized by involvement of the eyes, central nervous system, and kidneys. Dense congenital cataracts are found in all affected boys and infantile glaucoma in approximately 50%. All boys have impaired vision; corrected acuity is rarely better than 20/100. Generalized hypotonia is noted at birth and is of central (brain) origin. Deep tendon reflexes are usually absent. Hypotonia may slowly improve with age, but normal motor tone and strength are never achieved. Motor milestones are delayed. Almost all affected males have some degree of intellectual disability; 10%-25% function in the low-normal or borderline range, approximately 25% in the mild-to-moderate range, and 50%-65% in the severe-to-profound range of intellectual disability. Affected males have varying degrees of proximal renal tubular dysfunction of the Fanconi type, including low molecular-weight (LMW) proteinuria, aminoaciduria, bicarbonate wasting and renal tubular acidosis, phosphaturia with hypophosphatemia and renal rickets, hypercalciuria, sodium and potassium wasting, and polyuria. The features of symptomatic Fanconi syndrome do not usually become manifest until after the first few months of life, except for LMW proteinuria. Glomerulosclerosis associated with chronic tubular injury usually results in slowly progressive chronic renal failure and end-stage renal disease between the second and fourth decades of life.
Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase- MedGen UID:
- 82777
- •Concept ID:
- C0268151
- •
- Disease or Syndrome
The term "galactosemia" refers to disorders of galactose metabolism that include classic galactosemia, clinical variant galactosemia, and biochemical variant galactosemia (not covered in this chapter). This GeneReview focuses on: Classic galactosemia, which can result in life-threatening complications including feeding problems, failure to thrive, hepatocellular damage, bleeding, and E coli sepsis in untreated infants. If a lactose-restricted diet is provided during the first ten days of life, the neonatal signs usually quickly resolve and the complications of liver failure, sepsis, and neonatal death are prevented; however, despite adequate treatment from an early age, children with classic galactosemia remain at increased risk for developmental delays, speech problems (termed childhood apraxia of speech and dysarthria), and abnormalities of motor function. Almost all females with classic galactosemia manifest hypergonadatropic hypogonadism or premature ovarian insufficiency (POI). Clinical variant galactosemia, which can result in life-threatening complications including feeding problems, failure to thrive, hepatocellular damage including cirrhosis, and bleeding in untreated infants. This is exemplified by the disease that occurs in African Americans and native Africans in South Africa. Persons with clinical variant galactosemia may be missed with newborn screening as the hypergalactosemia is not as marked as in classic galactosemia and breath testing is normal. If a lactose-restricted diet is provided during the first ten days of life, the severe acute neonatal complications are usually prevented. African Americans with clinical variant galactosemia and adequate early treatment do not appear to be at risk for long-term complications, including POI.
Argininosuccinate lyase deficiency- MedGen UID:
- 78687
- •Concept ID:
- C0268547
- •
- Disease or Syndrome
Deficiency of argininosuccinate lyase (ASL), the enzyme that cleaves argininosuccinic acid to produce arginine and fumarate in the fourth step of the urea cycle, may present as a severe neonatal-onset form or a late-onset form: The severe neonatal-onset form is characterized by hyperammonemia within the first few days after birth that can manifest as increasing lethargy, somnolence, refusal to feed, vomiting, tachypnea, and respiratory alkalosis. Absence of treatment leads to worsening lethargy, seizures, coma, and even death. In contrast, the manifestations of late-onset form range from episodic hyperammonemia triggered by acute infection or stress to cognitive impairment, behavioral abnormalities, and/or learning disabilities in the absence of any documented episodes of hyperammonemia. Manifestations of ASL deficiency that appear to be unrelated to the severity or duration of hyperammonemic episodes: Neurocognitive deficiencies (attention-deficit/hyperactivity disorder, developmental delay, seizures, and learning disability). Liver disease (hepatitis, cirrhosis). Trichorrhexis nodosa (coarse brittle hair that breaks easily). Systemic hypertension.
Glutamate formiminotransferase deficiency- MedGen UID:
- 82823
- •Concept ID:
- C0268609
- •
- Disease or Syndrome
Glutamate formiminotransferase deficiency is an autosomal recessive disorder and the second most common inborn error of folate metabolism. Features of a severe phenotype include elevated levels of formiminoglutamate (FIGLU) in the urine in response to histidine administration, megaloblastic anemia, and mental retardation. Features of a mild phenotype include high urinary excretion of FIGLU in the absence of histidine administration, mild developmental delay, and no hematologic abnormalities (summary by Hilton et al., 2003).
Familial methionine malabsorption- MedGen UID:
- 78693
- •Concept ID:
- C0268622
- •
- Disease or Syndrome
Lysinuric protein intolerance- MedGen UID:
- 75704
- •Concept ID:
- C0268647
- •
- Disease or Syndrome
Lysinuric protein intolerance (LPI) typically presents after an infant is weaned from breast milk or formula; variable findings include recurrent vomiting and episodes of diarrhea, episodes of stupor and coma after a protein-rich meal, poor feeding, aversion to protein-rich food, failure to thrive, hepatosplenomegaly, and muscular hypotonia. Over time, findings include: poor growth, osteoporosis, involvement of the lungs (progressive interstitial changes, pulmonary alveolar proteinosis) and of the kidneys (progressive glomerular and proximal tubular disease), hematologic abnormalities (normochromic or hypochromic anemia, leukopenia, thrombocytopenia, erythroblastophagocytosis in the bone marrow aspirate), and a clinical presentation resembling the hemophagocytic lymphohistiocytosis/macrophagic activation syndrome. Hypercholesterolemia, hypertriglyceridemia, and acute pancreatitis can also be seen.
Megaloblastic anemia, thiamine-responsive, with diabetes mellitus and sensorineural deafness- MedGen UID:
- 83338
- •Concept ID:
- C0342287
- •
- Congenital Abnormality
Thiamine-responsive megaloblastic anemia syndrome (TRMA) is characterized by megaloblastic anemia, progressive sensorineural hearing loss, and diabetes mellitus. Onset of megaloblastic anemia occurs between infancy and adolescence. The anemia is corrected with thiamine treatment, but the red cells remain macrocytic and anemia can recur if treatment is withdrawn. Progressive sensorineural hearing loss often occurs early and can be detected in toddlers; hearing loss is irreversible and may not be prevented by thiamine treatment. The diabetes mellitus is non-type I in nature, with age of onset from infancy to adolescence. Thiamine treatment may reduce insulin requirement and delay onset of diabetes in some individuals.
3-Hydroxyisobutyric aciduria- MedGen UID:
- 90996
- •Concept ID:
- C0342737
- •
- Disease or Syndrome
A rare classic organic aciduria characterized by tissue accumulation and elevation of urinary excretion of 3-hydroxyisobutyric acid. The clinical phenotype ranges from recurrent mild episodes of vomiting with normal cognitive development, to massive acidosis, seizures, and failure to thrive with profound intellectual disability and early death. Dysmorphic craniofacial features (such as microcephaly, triangular face, short, sloping forehead, long, prominent philtrum, and micrognathia) and variable cerebral anomalies have also been described.
Beta-hydroxyisobutyryl-CoA deacylase deficiency- MedGen UID:
- 83349
- •Concept ID:
- C0342738
- •
- Disease or Syndrome
3-Hydroxyisobutyryl-CoA hydrolase deficiency (HIBCHD) is an autosomal recessive inborn error of metabolism characterized by severely delayed psychomotor development, neurodegeneration, increased lactic acid, and brain lesions in the basal ganglia (summary by Ferdinandusse et al., 2013).
D-Glyceric aciduria- MedGen UID:
- 452447
- •Concept ID:
- C0342765
- •
- Disease or Syndrome
D-glyceric aciduria is a rare autosomal recessive metabolic disorder with a highly variable phenotype. Some patients have an encephalopathic presentation, with severe mental retardation, seizures, microcephaly, and sometimes early death, whereas others have a mild phenotype with only mild speech delay or even normal development (summary by Sass et al., 2010).
Fumarase deficiency- MedGen UID:
- 87458
- •Concept ID:
- C0342770
- •
- Disease or Syndrome
Fumarate hydratase (FH) deficiency results in severe neonatal and early infantile encephalopathy that is characterized by poor feeding, failure to thrive, hypotonia, lethargy, and seizures. Dysmorphic facial features include frontal bossing, depressed nasal bridge, and widely spaced eyes. Many affected individuals are microcephalic. A spectrum of brain abnormalities are seen on magnetic resonance imaging, including cerebral atrophy, enlarged ventricles and generous extra-axial cerebral spinal fluid (CSF) spaces, delayed myelination for age, thinning of the corpus callosum, and an abnormally small brain stem. Brain malformations including bilateral polymicrogyria and absence of the corpus callosum can also be observed. Development is severely affected: most affected individuals are nonverbal and nonambulatory, and many die during early childhood. Less severely affected individuals with moderate cognitive impairment and long-term survival have been reported.
Leukocyte adhesion deficiency type II- MedGen UID:
- 96022
- •Concept ID:
- C0398739
- •
- Disease or Syndrome
Congenital disorder of glycosylation type IIc (CDG2C) is an autosomal recessive disorder characterized by moderate to severe psychomotor retardation, mild dysmorphism, and impaired neutrophil motility. It is a member of a group of disorders with a defect in the processing of protein-bound glycans. For a general overview of congenital disorders of glycosylation (CDGs), see CDG1A (212065) and CDG2A (212066).
Frydman (1996) contended that the neutrophil defect in CDG2C, which has been referred to as 'leukocyte adhesion deficiency type II' (LAD2), is a manifestation of the disorder and that there are no cases of 'primary' LAD II.
Etzioni and Harlan (1999) provided a comprehensive review of both leukocyte adhesion deficiency-1 (LAD1; 116920) and LAD2. While the functional neutrophil studies are similar in the 2 LADs, the clinical course is milder in LAD2. Furthermore, patients with LAD2 present other abnormal features, such as growth and mental retardation, which are related to the primary defect in fucose metabolism. Delayed separation of the umbilical cord occurs in LAD1. For a discussion of genetic heterogeneity of LAD, see 116920.
UDPglucose-4-epimerase deficiency- MedGen UID:
- 199598
- •Concept ID:
- C0751161
- •
- Disease or Syndrome
Epimerase deficiency galactosemia (GALE deficiency galactosemia) is generally considered a continuum comprising several forms: Generalized. Enzyme activity is profoundly decreased in all tissues tested. Peripheral. Enzyme activity is deficient in red blood cells (RBC) and circulating white blood cells, but normal or near normal in all other tissues. Intermediate. Enzyme activity is deficient in red blood cells and circulating white blood cells and less than 50% of normal levels in other cells tested. Infants with generalized epimerase deficiency galactosemia develop clinical findings on a regular milk diet (which contains lactose, a disaccharide of galactose and glucose); manifestations include hypotonia, poor feeding, vomiting, weight loss, jaundice, hepatomegaly, liver dysfunction, aminoaciduria, and cataracts. Prompt removal of galactose/lactose from their diet resolves or prevents these acute symptoms. Longer-term features that may be seen in those with generalized epimerase deficiency include short stature, developmental delay, sensorineural hearing loss, and skeletal anomalies. In contrast, neonates with the peripheral or intermediate form generally remain clinically well even on a regular milk diet and are usually only identified by biochemical testing, often in newborn screening programs.
Encephalopathy due to beta-mercaptolactate-cysteine disulfiduria- MedGen UID:
- 208661
- •Concept ID:
- C0796055
- •
- Disease or Syndrome
An extremely rare disorder of methionine cycle and sulfur amino acid metabolism with characteristics of increased urine excretion of beta-mercaptolactate-cysteine disulfide (due to deficiency of mercaptopyruvate sulfurtransferase activity in erythrocytes), leading to a positive cyanide nitroprusside test. Association with intellectual disability, congenital lens dislocation, and behavioral abnormalities has been reported, however the causal link remains to be established. There have been no further descriptions in the literature since 1981.
Neonatal severe primary hyperparathyroidism- MedGen UID:
- 331326
- •Concept ID:
- C1832615
- •
- Disease or Syndrome
Neonatal severe hyperparathyroidism usually manifests in the first 6 months of life with severe hypercalcemia, bone demineralization, and failure to thrive. Early diagnosis is critical because untreated NSHPT can be a devastating neurodevelopmental disorder, which in some cases is lethal without parathyroidectomy. Some infants have milder hyperparathyroidism and a substantially milder clinical presentation and natural history (summary by Egbuna and Brown, 2008).
Alpha-N-acetylgalactosaminidase deficiency type 2- MedGen UID:
- 324539
- •Concept ID:
- C1836522
- •
- Disease or Syndrome
Alpha-N-acetylgalactosaminidase (NAGA) deficiency is a very rare lysosomal storage disorder with atypical features. It is clinically heterogeneous with 3 main phenotypes: type I is an infantile-onset neuroaxonal dystrophy (609241); type II, also known as Kanzaki disease, is an adult-onset disorder characterized by angiokeratoma corporis diffusum and mild intellectual impairment; and type III is an intermediate disorder (see 609241) with mild to moderate neurologic manifestations (Desnick and Schindler, 2001).
Proteinuria, low molecular weight, with hypercalciuria and nephrocalcinosis- MedGen UID:
- 333426
- •Concept ID:
- C1839874
- •
- Disease or Syndrome
Low molecular weight proteinuria with hypercalciuria and nephrocalcinosis is a form of X-linked hypercalciuric nephrocalcinosis, a group of disorders characterized by proximal renal tubular reabsorptive failure, hypercalciuria, nephrocalcinosis, and renal insufficiency. These disorders have also been referred to as the 'Dent disease complex' (Scheinman, 1998; Gambaro et al., 2004). For a general discussion of Dent disease, see 300009.
Dent disease type 2- MedGen UID:
- 336867
- •Concept ID:
- C1845167
- •
- Disease or Syndrome
Dent disease, an X-linked disorder of proximal renal tubular dysfunction, is characterized by low molecular weight (LMW) proteinuria, hypercalciuria, and at least one additional finding including nephrocalcinosis, nephrolithiasis, hematuria, hypophosphatemia, chronic kidney disease (CKD), and evidence of X-linked inheritance. Males younger than age ten years may manifest only LMW proteinuria and/or hypercalciuria, which are usually asymptomatic. Thirty to 80% of affected males develop end-stage renal disease (ESRD) between ages 30 and 50 years; in some instances ESRD does not develop until the sixth decade of life or later. The disease may also be accompanied by rickets or osteomalacia, growth restriction, and short stature. Disease severity can vary within the same family. Males with Dent disease 2 (caused by pathogenic variants in OCRL) may also have mild intellectual disability, cataracts, and/or elevated muscle enzymes. Due to random X-chromosome inactivation, some female carriers may manifest hypercalciuria and, rarely, renal calculi and moderate LMW proteinuria. Females rarely develop CKD.
Dent disease type 1- MedGen UID:
- 336322
- •Concept ID:
- C1848336
- •
- Disease or Syndrome
Dent disease, an X-linked disorder of proximal renal tubular dysfunction, is characterized by low molecular weight (LMW) proteinuria, hypercalciuria, and at least one additional finding including nephrocalcinosis, nephrolithiasis, hematuria, hypophosphatemia, chronic kidney disease (CKD), and evidence of X-linked inheritance. Males younger than age ten years may manifest only LMW proteinuria and/or hypercalciuria, which are usually asymptomatic. Thirty to 80% of affected males develop end-stage renal disease (ESRD) between ages 30 and 50 years; in some instances ESRD does not develop until the sixth decade of life or later. The disease may also be accompanied by rickets or osteomalacia, growth restriction, and short stature. Disease severity can vary within the same family. Males with Dent disease 2 (caused by pathogenic variants in OCRL) may also have mild intellectual disability, cataracts, and/or elevated muscle enzymes. Due to random X-chromosome inactivation, some female carriers may manifest hypercalciuria and, rarely, renal calculi and moderate LMW proteinuria. Females rarely develop CKD.
Ichthyosis, split hairs, and amino aciduria- MedGen UID:
- 344576
- •Concept ID:
- C1855786
- •
- Disease or Syndrome
Dicarboxylic aminoaciduria- MedGen UID:
- 387782
- •Concept ID:
- C1857253
- •
- Disease or Syndrome
Dicarboxylic aminoaciduria (DCBXA) is characterized by a striking excretion of urinary glutamate and aspartate, resulting from the incomplete reabsorption of anionic amino acids from the glomerular filtrate in the kidney. Patients may have impaired intellectual development (summary by Bailey et al., 2011).
Arthrogryposis, renal dysfunction, and cholestasis 1- MedGen UID:
- 347219
- •Concept ID:
- C1859722
- •
- Disease or Syndrome
Any arthrogryposis-renal dysfunction-cholestasis syndrome in which the cause of the disease is a mutation in the VPS33B gene.
Amino aciduria with mental deficiency, dwarfism, muscular dystrophy, osteoporosis, and acidosis- MedGen UID:
- 347955
- •Concept ID:
- C1859818
- •
- Disease or Syndrome
GRACILE syndrome- MedGen UID:
- 400428
- •Concept ID:
- C1864002
- •
- Disease or Syndrome
GRACILE syndrome is an autosomal recessive lethal disorder characterized by fetal growth retardation, lactic acidosis, aminoaciduria, cholestasis, and abnormalities in iron metabolism. Patients develop fulminant lactic acidosis during the first day of life. Despite intensive care, about half of affected infants die during the first days of life, and the remainder within 4 months of life. Finnish and British patients have been reported, with slightly different phenotypes; the British patients have additional features of complex III deficiency and neurologic symptoms (Visapaa et al., 2002).
SLC35A1-congenital disorder of glycosylation- MedGen UID:
- 370234
- •Concept ID:
- C1970344
- •
- Disease or Syndrome
An extremely rare form of carbohydrate deficient glycoprotein syndrome characterized clinically in the single reported case by repeated hemorrhagic incidents, including severe pulmonary hemorrhage.
Mitochondrial DNA depletion syndrome 8a- MedGen UID:
- 412815
- •Concept ID:
- C2749861
- •
- Disease or Syndrome
Four phenotypes comprise the RRM2B mitochondrial DNA maintenance defects (RRM2B-MDMDs): RRM2B encephalomyopathic MDMD, the most severe phenotype, usually manifesting shortly after birth as hypotonia, poor feeding, and faltering growth requiring hospitalization. Subsequent assessments are likely to reveal multisystem involvement including sensorineural hearing loss, renal tubulopathy, and respiratory failure. Autosomal dominant progressive external ophthalmoplegia (adPEO), typically adult onset; other manifestations can include ptosis, bulbar dysfunction, fatigue, and muscle weakness. RRM2B autosomal recessive progressive external ophthalmoplegia (arPEO), a typically childhood-onset predominantly myopathic phenotype of PEO, ptosis, proximal muscle weakness, and bulbar dysfunction. RRM2B mitochondrial neurogastrointestinal encephalopathy (MNGIE)-like, characterized by progressive ptosis, ophthalmoplegia, gastrointestinal dysmotility, cachexia, and peripheral neuropathy. To date, 78 individuals from 52 families with a molecularly confirmed RRM2B-MDMD have been reported.
Mitochondrial DNA depletion syndrome, encephalomyopathic form with methylmalonic aciduria- MedGen UID:
- 413170
- •Concept ID:
- C2749864
- •
- Disease or Syndrome
SUCLA2-related mitochondrial DNA (mtDNA) depletion syndrome, encephalomyopathic form with methylmalonic aciduria is characterized by onset of the following features in infancy or childhood (median age of onset 2 months; range of onset birth to 6 years): psychomotor retardation, hypotonia, dystonia, muscular atrophy, sensorineural hearing impairment, postnatal growth retardation, and feeding difficulties. Other less frequent features include distinctive facial features, contractures, kyphoscoliosis, gastroesophageal reflux, ptosis, choreoathetosis, ophthalmoplegia, and epilepsy (infantile spasms or generalized convulsions). The median survival is 20 years; approximately 30% of affected individuals succumb during childhood. Affected individuals may have hyperintensities in the basal ganglia, cerebral atrophy, and leukoencephalopathy on head MRI. Elevation of methylmalonic acid (MMA) in the urine and plasma is found in a vast majority of affected individuals, although at levels that are far below those typically seen in individuals with classic methylmalonic aciduria.
Odontotrichomelic syndrome- MedGen UID:
- 443944
- •Concept ID:
- C2930960
- •
- Disease or Syndrome
A rare genetic disease characterized by intellectual disability, growth delay, absence deformities of upper and lower limbs, hypotrichosis, hypoplastic nails, abnormal dentition, abnormal auricles, hypoplastic nipples, thyroid enlargement, and abnormalities of tyrosine and/or tryptophane metabolism. Hypogonadism and cleft lip have also been reported. No new cases have been confirmed since 1970.
Nephropathic cystinosis- MedGen UID:
- 419735
- •Concept ID:
- C2931187
- •
- Disease or Syndrome
Cystinosis comprises three allelic phenotypes: Nephropathic cystinosis in untreated children is characterized by renal Fanconi syndrome, poor growth, hypophosphatemic/calcipenic rickets, impaired glomerular function resulting in complete glomerular failure, and accumulation of cystine in almost all cells, leading to cellular dysfunction with tissue and organ impairment. The typical untreated child has short stature, rickets, and photophobia. Failure to thrive is generally noticed after approximately age six months; signs of renal tubular Fanconi syndrome (polyuria, polydipsia, dehydration, and acidosis) appear as early as age six months; corneal crystals can be present before age one year and are always present after age 16 months. Prior to the use of renal transplantation and cystine-depleting therapy, the life span in nephropathic cystinosis was no longer than ten years. With these interventions, affected individuals can survive at least into the mid-forties or fifties with satisfactory quality of life. Intermediate cystinosis is characterized by all the typical manifestations of nephropathic cystinosis, but onset is at a later age. Renal glomerular failure occurs in all untreated affected individuals, usually between ages 15 and 25 years. The non-nephropathic (ocular) form of cystinosis is characterized clinically only by photophobia resulting from corneal cystine crystal accumulation.
Mitochondrial DNA depletion syndrome, myopathic form- MedGen UID:
- 461100
- •Concept ID:
- C3149750
- •
- Disease or Syndrome
TK2-related mitochondrial DNA (mtDNA) maintenance defect is a phenotypic continuum that ranges from severe to mild. To date, approximately 107 individuals with a molecularly confirmed diagnosis have been reported. Three main subtypes of presentation have been described: Infantile-onset myopathy with neurologic involvement and rapid progression to early death. Affected individuals experience progressive muscle weakness leading to respiratory failure. Some individuals develop dysarthria, dysphagia, and/or hearing loss. Cognitive function is typically spared. Juvenile/childhood onset with generalized proximal weakness and survival to at least 13 years. Late-/adult-onset myopathy with facial and limb weakness and mtDNA deletions. Some affected individuals develop respiratory insufficiency, chronic progressive external ophthalmoplegia, dysphagia, and dysarthria.
Arthrogryposis, renal dysfunction, and cholestasis 2- MedGen UID:
- 462022
- •Concept ID:
- C3150672
- •
- Disease or Syndrome
Arthrogryposis, renal dysfunction, and cholestasis-2 (ARCS2) is a multisystem disorder associated with abnormalities in polarized liver and kidney cells (Qiu et al., 2019).
For a general phenotypic description and a discussion of genetic heterogeneity of ARCS, see ARCS1 (208085).
Mitochondrial complex V (ATP synthase) deficiency, nuclear type 1- MedGen UID:
- 477906
- •Concept ID:
- C3276276
- •
- Disease or Syndrome
A distinct group of inborn defects of complex V (ATP synthase) is represented by the enzyme deficiency due to nuclear genome mutations characterized by a selective inhibition of ATP synthase biogenesis. Biochemically, the patients show a generalized decrease in the content of ATP synthase complex which is less than 30% of normal. Most cases present with neonatal-onset hypotonia, lactic acidosis, hyperammonemia, hypertrophic cardiomyopathy, and 3-methylglutaconic aciduria. Many patients die within a few months or years (summary by Mayr et al., 2010).
Genetic Heterogeneity of Mitochondrial Complex V Deficiency
Other nuclear types of mitochondrial complex V deficiency include MC5DN2 (614052), caused by mutation in the TMEM70 gene (612418) on chromosome 8q21; MC5DN3 (614053), caused by mutation in the ATP5E gene (ATP5F1E; 606153) on chromosome 20q13; MC5DN4A (620358) and MC5DN4B (615228), both caused by mutation in the ATP5A1 gene (ATP5F1A; 164360) on chromosome 18q; MC5DN5 (618120), caused by mutation in the ATP5D gene (ATP5F1D; 603150) on chromosome 19p13; MC5DN6 (618683), caused by mutation in the USMG5 gene (ATP5MD; 615204) on chromosome 10q24; and MC5DN7 (620359), caused by mutation in the ATP5PO gene (600828) on chromosome 21q22.
Mutations in the mitochondrial-encoded MTATP6 (516060) and MTATP8 (516070) genes can also cause mitochondrial complex V deficiency (see, e.g., 500015).
Encephalomyopathy, mitochondrial, due to voltage-dependent anion channel deficiency- MedGen UID:
- 482736
- •Concept ID:
- C3281106
- •
- Disease or Syndrome
Mitochondrial complex III deficiency nuclear type 1- MedGen UID:
- 762097
- •Concept ID:
- C3541471
- •
- Disease or Syndrome
Autosomal recessive mitochondrial complex III deficiency is a severe multisystem disorder with onset at birth of lactic acidosis, hypotonia, hypoglycemia, failure to thrive, encephalopathy, and delayed psychomotor development. Visceral involvement, including hepatopathy and renal tubulopathy, may also occur. Many patients die in early childhood, but some may show longer survival (de Lonlay et al., 2001; De Meirleir et al., 2003).
Genetic Heterogeneity of Mitochondrial Complex III Deficiency
Mitochondrial complex III deficiency can be caused by mutation in several different nuclear-encoded genes. See MC3DN2 (615157), caused by mutation in the TTC19 gene (613814) on chromosome 17p12; MC3DN3 (615158), caused by mutation in the UQCRB gene (191330) on chromosome 8q; MC3DN4 (615159), caused by mutation in the UQCRQ gene (612080) on chromosome 5q31; MC3DN5 (615160), caused by mutation in the UQCRC2 gene (191329) on chromosome 16p12; MC3DN6 (615453), caused by mutation in the CYC1 gene (123980) on chromosome 8q24; MC3DN7 (615824), caused by mutation in the UQCC2 gene (614461) on chromosome 6p21; MC3DN8 (615838), caused by mutation in the LYRM7 gene (615831) on chromosome 5q23; MC3DN9 (616111), caused by mutation in the UQCC3 gene (616097) on chromosome 11q12; and MC3DN10 (618775), caused by mutation in the UQCRFS1 gene (191327) on chromosome 19q12.
See also MTYCB (516020) for a discussion of a milder phenotype associated with isolated mitochondrial complex III deficiency and mutations in a mitochondrial-encoded gene.
Peroxisome biogenesis disorder 2A (Zellweger)- MedGen UID:
- 763187
- •Concept ID:
- C3550273
- •
- Disease or Syndrome
The peroxisome biogenesis disorder (PBD) Zellweger syndrome (ZS) is an autosomal recessive multiple congenital anomaly syndrome. Affected children present in the newborn period with profound hypotonia, seizures, and inability to feed. Characteristic craniofacial anomalies, eye abnormalities, neuronal migration defects, hepatomegaly, and chondrodysplasia punctata are present. Children with this condition do not show any significant development and usually die in the first year of life (summary by Steinberg et al., 2006).
For a complete phenotypic description and a discussion of genetic heterogeneity of Zellweger syndrome, see 214100.
Individuals with PBDs of complementation group 2 (CG2) have mutations in the PEX5 gene. For information on the history of PBD complementation groups, see 214100.
Fanconi renotubular syndrome 3- MedGen UID:
- 816430
- •Concept ID:
- C3810100
- •
- Disease or Syndrome
Fanconi renotubular syndrome-3 (FRTS3) is an autosomal dominant disorder characterized by rickets, impaired growth, glucosuria, generalized aminoaciduria, phosphaturia, metabolic acidosis, and low molecular weight proteinuria (summary by Klootwijk et al., 2014).
For a general phenotypic description and a discussion of genetic heterogeneity of Fanconi renotubular syndrome, see FRTS1 (134600).
Fanconi renotubular syndrome 4 with maturity-onset diabetes of the young- MedGen UID:
- 863399
- •Concept ID:
- C4014962
- •
- Disease or Syndrome
Any Fanconi syndrome in which the cause of the disease is a mutation in the HNF4A gene.
Congenital sideroblastic anemia-B-cell immunodeficiency-periodic fever-developmental delay syndrome- MedGen UID:
- 863609
- •Concept ID:
- C4015172
- •
- Disease or Syndrome
Sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD) is an autosomal recessive syndromic disorder characterized by onset of severe sideroblastic anemia in the neonatal period or infancy. Affected individuals show delayed psychomotor development with variable neurodegeneration. Recurrent periodic fevers without an infectious etiology occur throughout infancy and childhood; immunologic work-up shows B-cell lymphopenia and hypogammaglobulinemia. Other more variable features include sensorineural hearing loss, retinitis pigmentosa, nephrocalcinosis, and cardiomyopathy. Death in the first decade may occur (summary by Wiseman et al., 2013).
Severe early-onset pulmonary alveolar proteinosis due to MARS deficiency- MedGen UID:
- 895551
- •Concept ID:
- C4225400
- •
- Disease or Syndrome
Interstitial lung and liver disease is an autosomal recessive disorder characterized by onset of respiratory insufficiency and progressive liver disease in infancy or early childhood. Pathologic examination of lung lavage is consistent with pulmonary alveolar proteinosis (summary by Hadchouel et al., 2015).
Fanconi renotubular syndrome 1- MedGen UID:
- 1635492
- •Concept ID:
- C4551503
- •
- Disease or Syndrome
Neurodevelopmental disorder with microcephaly, cataracts, and renal abnormalities- MedGen UID:
- 1634867
- •Concept ID:
- C4693567
- •
- Disease or Syndrome
Peroxisome biogenesis disorder 1A (Zellweger)- MedGen UID:
- 1648474
- •Concept ID:
- C4721541
- •
- Disease or Syndrome
Zellweger spectrum disorder (ZSD) is a phenotypic continuum ranging from severe to mild. While individual phenotypes (e.g., Zellweger syndrome [ZS], neonatal adrenoleukodystrophy [NALD], and infantile Refsum disease [IRD]) were described in the past before the biochemical and molecular bases of this spectrum were fully determined, the term "ZSD" is now used to refer to all individuals with a defect in one of the ZSD-PEX genes regardless of phenotype. Individuals with ZSD usually come to clinical attention in the newborn period or later in childhood. Affected newborns are hypotonic and feed poorly. They have distinctive facies, congenital malformations (neuronal migration defects associated with neonatal-onset seizures, renal cysts, and bony stippling [chondrodysplasia punctata] of the patella[e] and the long bones), and liver disease that can be severe. Infants with severe ZSD are significantly impaired and typically die during the first year of life, usually having made no developmental progress. Individuals with intermediate/milder ZSD do not have congenital malformations, but rather progressive peroxisome dysfunction variably manifest as sensory loss (secondary to retinal dystrophy and sensorineural hearing loss), neurologic involvement (ataxia, polyneuropathy, and leukodystrophy), liver dysfunction, adrenal insufficiency, and renal oxalate stones. While hypotonia and developmental delays are typical, intellect can be normal. Some have osteopenia; almost all have ameleogenesis imperfecta in the secondary teeth.
Combined oxidative phosphorylation defect type 14- MedGen UID:
- 1663069
- •Concept ID:
- C4755312
- •
- Disease or Syndrome
The spectrum of FARS2 deficiency ranges from the infantile-onset phenotype, characterized by epileptic encephalopathy with lactic acidosis and poor prognosis (70% of affected individuals), to the later-onset phenotype, characterized by spastic paraplegia, less severe neurologic manifestations, and longer survival (30% of affected individuals). To date FARS2 deficiency has been reported in 37 individuals from 25 families. Infantile-onset phenotype. Seizures are difficult to control and may progress quickly at an early age to intractable seizures with frequent status epilepticus; some children have hypsarrhythmia on EEG. All have developmental delay; most are nonverbal and unable to walk. Feeding difficulties are common. More than half of affected children die in early childhood. Later-onset phenotype. All affected individuals have spastic paraplegia manifested by weakness, spasticity, and exaggerated reflexes of the lower extremities associated with walking difficulties; some have developmental delay/intellectual disability; some have brief seizures that resolve over time.
Fanconi renotubular syndrome 5- MedGen UID:
- 1711127
- •Concept ID:
- C5394473
- •
- Disease or Syndrome
Fanconi renotubular syndrome-5 (FRTS5) is a mitochondrial disorder characterized by proximal renotubular dysfunction from birth, followed by progressive kidney disease and pulmonary fibrosis. It occurs only in individuals of Acadian descent (Crocker et al., 1997 and Hartmannova et al., 2016).
For a discussion of genetic heterogeneity of Fanconi renotubular syndrome, see FRTS1 (134600).
Mitochondrial complex IV deficiency, nuclear type 1- MedGen UID:
- 1750917
- •Concept ID:
- C5435656
- •
- Disease or Syndrome
Mitochondrial complex IV deficiency nuclear type 1 (MC4DN1) is an autosomal recessive metabolic disorder characterized by rapidly progressive neurodegeneration and encephalopathy with loss of motor and cognitive skills between about 5 and 18 months of age after normal early development. Affected individuals show hypotonia, failure to thrive, loss of the ability to sit or walk, poor communication, and poor eye contact. Other features may include oculomotor abnormalities, including slow saccades, strabismus, ophthalmoplegia, and nystagmus, as well as deafness, apneic episodes, ataxia, tremor, and brisk tendon reflexes. Brain imaging shows bilateral symmetric lesions in the basal ganglia, consistent with a clinical diagnosis of Leigh syndrome (see 256000). Some patients may also have abnormalities in the brainstem and cerebellum. Laboratory studies usually show increased serum and CSF lactate and decreased levels and activity of mitochondrial respiratory complex IV in patient tissues. There is phenotypic variability, but death in childhood, often due to central respiratory failure, is common (summary by Tiranti et al., 1998; Tiranti et al., 1999; Teraoka et al., 1999; Poyau et al., 2000)
Genetic Heterogeneity of Mitochondrial Complex IV Deficiency
Most isolated COX deficiencies are inherited as autosomal recessive disorders caused by mutations in nuclear-encoded genes; mutations in the mtDNA-encoded COX subunit genes are relatively rare (Shoubridge, 2001; Sacconi et al., 2003).
Mitochondrial complex IV deficiency caused by mutation in nuclear-encoded genes, in addition to MC4DN1, include MC4DN2 (604377), caused by mutation in the SCO2 gene (604272); MC4DN3 (619046), caused by mutation in the COX10 gene (602125); MC4DN4 (619048), caused by mutation in the SCO1 gene (603664); MC4DN5 (220111), caused by mutation in the LRPPRC gene (607544); MC4DN6 (615119), caused by mutation in the COX15 gene (603646); MC4DN7 (619051), caused by mutation in the COX6B1 gene (124089); MC4DN8 (619052), caused by mutation in the TACO1 gene (612958); MC4DN9 (616500), caused by mutation in the COA5 gene (613920); MC4DN10 (619053), caused by mutation in the COX14 gene (614478); MC4DN11 (619054), caused by mutation in the COX20 gene (614698); MC4DN12 (619055), caused by mutation in the PET100 gene (614770); MC4DN13 (616501), caused by mutation in the COA6 gene (614772); MC4DN14 (619058), caused by mutation in the COA3 gene (614775); MC4DN15 (619059), caused by mutation in the COX8A gene (123870); MC4DN16 (619060), caused by mutation in the COX4I1 gene (123864); MC4DN17 (619061), caused by mutation in the APOPT1 gene (616003); MC4DN18 (619062), caused by mutation in the COX6A2 gene (602009); MC4DN19 (619063), caused by mutation in the PET117 gene (614771); MC4DN20 (619064), caused by mutation in the COX5A gene (603773); MC4DN21 (619065), caused by mutation in the COXFA4 gene (603883); MC4DN22 (619355), caused by mutation in the COX16 gene (618064); and MC4DN23 (620275), caused by mutation in the COX11 gene (603648).
Mitochondrial complex IV deficiency has been associated with mutations in several mitochondrial genes, including MTCO1 (516030), MTCO2 (516040), MTCO3 (516050), MTTS1 (590080), MTTL1 (590050), and MTTN (590010).
Mitochondrial complex 4 deficiency, nuclear type 12- MedGen UID:
- 1745691
- •Concept ID:
- C5436695
- •
- Disease or Syndrome
Mitochondrial complex IV deficiency nuclear type 12 (MC4DN12) is an autosomal recessive metabolic disorder characterized by the onset of neurologic dysfunction in early infancy. Affected individuals demonstrate hypotonia with poor head control, profoundly delayed global development with inability to fix and follow, poor overall growth, abnormal spasms or myoclonus, and seizures. Most patients die in the first years of life; those that survive have spastic quadriplegia, feeding difficulties necessitating tube feeding, and profoundly impaired intellectual development with poor or absent communication. More variable features include cortical blindness, nystagmus, scoliosis, and hearing impairment. Brain imaging shows abnormalities consistent with Leigh syndrome (see 256000), as well as cystic cavitation. Laboratory studies show lactic acidosis, increased serum creatine kinase, and decreased levels and activity of mitochondrial respiratory complex IV (summary by Lim et al., 2014).
For a discussion of genetic heterogeneity of mitochondrial complex IV (cytochrome c oxidase) deficiency, see 220110.
Combined oxidative phosphorylation deficiency 52- MedGen UID:
- 1780479
- •Concept ID:
- C5543592
- •
- Disease or Syndrome
Combined oxidative phosphorylation deficiency-52 (COXPD52) is an autosomal recessive infantile mitochondrial complex II/III deficiency characterized by lactic acidemia, multiorgan system failure, and abnormal mitochondria. Intrafamilial variability has been reported (Farhan et al., 2014; Hershkovitz et al., 2021).
For a discussion of genetic heterogeneity of combined oxidative phosphorylation deficiency, see COXPD1 (609060).
Liver disease, severe congenital- MedGen UID:
- 1823968
- •Concept ID:
- C5774195
- •
- Disease or Syndrome
Severe congenital liver disease (SCOLIV) is an autosomal recessive disorder characterized by the onset of progressive hepatic dysfunction usually in the first years of life. Affected individuals show feeding difficulties with failure to thrive and features such as jaundice, hepatomegaly, and abdominal distension. Laboratory workup is consistent with hepatic insufficiency and may also show coagulation defects, anemia, or metabolic disturbances. Cirrhosis and hypernodularity are commonly observed on liver biopsy. Many patients die of liver failure in early childhood (Moreno Traspas et al., 2022).