U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 9

1.

Gene expression response to the antifungal compound plakortide F acid in S. cerevisiae

(Submitter supplied) Plakortide F acid (PFA), a marine-derived polyketide endoperoxide, exhibits strong inhibitory activity against the opportunistic fungal pathogens Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. In the present study, transcriptional profiling coupled with mutant and biochemical analyses were conducted using the model organism Saccharomyces cerevisiae, to investigate the mechanism of action of this compound. more...
Organism:
Saccharomyces cerevisiae; Saccharomyces cerevisiae S288C; Schizosaccharomyces pombe
Type:
Expression profiling by array
Platform:
GPL2529
6 Samples
Download data: CEL, CHP
Series
Accession:
GSE26925
ID:
200026925
2.

Gene expression response to the antifungal compound 6-Nonadecynoic acid (6-NDA) in Saccharomyces cerevisiae and Candida albicans

(Submitter supplied) 6-Nonadecynoic acid (6-NDA), a plant-derived acetylenic acid, exhibits strong inhibitory activity against the human fungal pathogens Candida albicans, Aspergillus fumigatus, and Trichophyton mentagrophytes. In the present study, transcriptional profiling coupled with mutant and biochemical analyses were conducted using the model organism Saccharomyces cerevisiae to investigate the mechanism of action of this compound. more...
Organism:
Saccharomyces cerevisiae; Candida albicans; Schizosaccharomyces pombe
Type:
Expression profiling by array
Platforms:
GPL15195 GPL2529
14 Samples
Download data: CEL, CHP, TXT
Series
Accession:
GSE35604
ID:
200035604
3.

Gene expression response to the antifungal compound sampangine

(Submitter supplied) Sampangine, a plant-derived alkaloid found in the Annonaceae family, exhibits strong inhibitory activity against the opportunistic fungal pathogens Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. In the present study, transcriptional profiling experiments coupled with the analysis of mutants were performed in an effort to elucidate its mechanism of action. Using Saccharomyces cerevisiae as a model organism, we show that sampangine produces a transcriptional response indicative of hypoxia, altering the expression of genes known to respond to low oxygen conditions. more...
Organism:
Saccharomyces cerevisiae; Candida albicans
Type:
Expression profiling by array
Platforms:
GPL6346 GPL90
9 Samples
Download data: CEL, TXT
Series
Accession:
GSE10104
ID:
200010104
4.

Gene expression response to the antifungal compound sampangine in C. albicans

(Submitter supplied) Sampangine, a plant-derived alkaloid found in the Annonaceae family, exhibits strong inhibitory activity against the opportunistic fungal pathogens Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. In the present study, transcriptional profiling experiments coupled with the analysis of mutants were performed in an effort to elucidate its mechanism of action. Using Saccharomyces cerevisiae as a model organism, we show that sampangine produces a transcriptional response indicative of hypoxia, altering the expression of genes known to respond to low oxygen conditions. more...
Organism:
Candida albicans
Type:
Expression profiling by array
Platform:
GPL6346
3 Samples
Download data: TXT
Series
Accession:
GSE10075
ID:
200010075
5.

Gene expression response to the antifungal compound sampangine in S. cerevisiae

(Submitter supplied) Sampangine, a plant-derived alkaloid found in the Annonaceae family, exhibits strong inhibitory activity against the opportunistic fungal pathogens Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. In the present study, transcriptional profiling experiments coupled with the analysis of mutants were performed in an effort to elucidate its mechanism of action. Using Saccharomyces cerevisiae as a model organism, we show that sampangine produces a transcriptional response indicative of hypoxia, altering the expression of genes known to respond to low oxygen conditions. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Dataset:
GDS3137
Platform:
GPL90
6 Samples
Download data: CEL
Series
Accession:
GSE10073
ID:
200010073
6.

University of Texas UTHSC-H Candida albicans 6K v1.0

(Submitter supplied) The C. albicans Genome Oligo Set consisting of 70mer probes representing 6266 C. albicans genes was obtained from Qiagen (Valencia, CA), and printed on glass slides by Microarrays, Inc (Nashville, TN).
Organism:
Candida albicans
2 Series
3 Samples
Download data
Platform
Accession:
GPL6346
ID:
100006346
7.
Full record GDS3137

Antifungal compound sampangine effect on Saccharomyces cerevisiea

Analysis of Saccharomyces cerevisiae cells treated with the antifungal compound sampangine. Sampangine exhibits strong inhibitory activity against opportunistic fungal pathogens such as Candida albicans. Using S. cerevisiae as a model, results provide insight into sampangine's mechanism of action.
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array, count, 2 agent sets
Platform:
GPL90
Series:
GSE10073
6 Samples
Download data: CEL
8.

Saccharomyces cerevisiae deletion collections chemogenomic screen with sr7575

(Submitter supplied) Growth assay in the presence of a toxic chemical (sr7575) that uses the barcoded collections of yeast gene deletions (haploid, diploid, DamP) to identify deletion strains that are hypersensitive to the drug.
Organism:
Saccharomyces cerevisiae S288C; Saccharomyces cerevisiae
Type:
Other
Platform:
GPL18088
4 Samples
Download data: GPR
Series
Accession:
GSE60934
ID:
200060934
9.

Gene expression response to eupolauridine-9591 (E9591) and liriodenine methiodide (LMT) in Saccharomyces cerevisiae

(Submitter supplied) Eupolauridine and liriodenine are plant-derived aporphinoid alkaloids that exhibit potent inhibitory activity against the opportunistic fungal pathogens Candida albicans and Cryptococcus neoformans. However, the molecular mechanism of this antifungal activity is unknown. In this study, we show that eupolauridine 9591 (E9591), a synthetic analog of eupolauridine, and liriodenine methiodide (LMT), a methiodide salt of liriodenine, mediate their antifungal activities by disrupting mitochondrial iron-sulfur (Fe-S) cluster synthesis. more...
Organism:
Saccharomyces cerevisiae; Schizosaccharomyces pombe
Type:
Expression profiling by array
Platform:
GPL2529
30 Samples
Download data: CEL, CHP
Series
Accession:
GSE101749
ID:
200101749
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=4|qty=5|blobid=MCID_67399d7ac6023e543c303a8f|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center