U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Histone deacetylation at coding sequences adjusts transcription kinetics during Candida albicans morphogenesis [ChIP-seq]

(Submitter supplied) The dataset contains ChIP-Seq data of the Set3 and Hos2 proteins in Candida albicans, assayed in two morphological phases (yeast and hypha). The Set3 and Hos2 proteins in the respective strains carry 9myc epitopes and ChIP was performed with an anti-myc antibody. Included samples are the following: 1 input and 1 ChIP sample of an untagged wild type strain as negative control assayed in the yeast phase, 1 input and 3 ChIP biological replicates of the Set3-9myc strain in the yeast phase, 1 input and 2 ChIP biological replicates of the Set3-9myc strain in the hypha phase, 1 input and 2 ChIP biological replicates of the Hos2-9myc strain in the yeast phase, 1 input and 2 ChIP biological replicates of the Hos2-9myc strain in the hypha phase, 1 input and 3 ChIP biological replicates of Set3-9myc in a set1delta/delta background in the yeast phase.
Organism:
Candida albicans
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL15149
19 Samples
Download data: TXT
Series
Accession:
GSE38425
ID:
200038425
2.

Histone deacetylation at coding sequences adjusts transcription kinetics during Candida albicans morphogenesis.

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Candida albicans
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL15149 GPL15645
31 Samples
Download data: TXT
Series
Accession:
GSE38427
ID:
200038427
3.

Histone deacetylation at coding sequences adjusts transcription kinetics during Candida albicans morphogenesis [RNA-seq]

(Submitter supplied) Transcriptome analysis of wild type and set3-deficient Candida albicans cells in yeast and hyphal morphological phases
Organism:
Candida albicans
Type:
Expression profiling by high throughput sequencing
Platform:
GPL15645
12 Samples
Download data: TXT
Series
Accession:
GSE38426
ID:
200038426
4.

ChIP-Seq analysis of Candida albicans Sfl1p and Sfl2p

(Submitter supplied) Sfl1p and Sfl2p are two homologous heat shock factor-type transcriptional regulators that antagonistically control morphogenesis in Candida albicans, while being required for full pathogenesis and virulence. To understand how Sfl1p and Sfl2p exert their function, we combined genome-wide location and expression analyses to reveal their transcriptional targets in vivo together with the associated changes of the C. more...
Organism:
Candida albicans
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL15645
8 Samples
Download data: WIG
Series
Accession:
GSE42886
ID:
200042886
5.

Functional Portrait of Irf1 (Orf19.217), a Regulator of Morphogenesis and Iron Homeostasis in Candida albicans

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Candida albicans
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL19036 GPL24725
24 Samples
Download data: BED
Series
Accession:
GSE207073
ID:
200207073
6.

Functional Portrait of Irf1 (Orf19.217), a Regulator of Morphogenesis and Iron Homeostasis in Candida albicans [RNA-Seq]

(Submitter supplied) The fungus Candida albicans is part of the human microbiome and mainly colonises the GI tract of healthy individuals. However, when the balance in the GI tract is disturbed, the fungus can switch from a commensal to a virulent lifestyle and can turn into a life-threatening pathogen. Life in the host is characterised by a constant struggle for nutrients, essential trace elements such as iron, copper and zinc are particularly important. more...
Organism:
Candida albicans
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19036
18 Samples
Download data: TXT
Series
Accession:
GSE207072
ID:
200207072
7.

Functional Portrait of Irf1 (Orf19.217), a Regulator of Morphogenesis and Iron Homeostasis in Candida albicans [ChIP-Seq]

(Submitter supplied) The fungus Candida albicans is part of the human microbiome and mainly colonises the GI tract of healthy individuals. However, when the balance in the GI tract is disturbed, the fungus can switch from a commensal to a virulent lifestyle and can turn into a life-threatening pathogen. Life in the host is characterised by a constant struggle for nutrients, essential trace elements such as iron, copper and zinc are particularly important. more...
Organism:
Candida albicans
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL24725
6 Samples
Download data: BED
Series
Accession:
GSE207033
ID:
200207033
8.

A Genome-wide Transcriptional Analysis of Morphology Determination in Candida albicans

(Submitter supplied) Candida albicans, the most common cause of human fungal infections, undergoes a reversible morphological transition from yeast to pseudohyphal and hyphal filaments, which is required for virulence. For many years, the relationship between global gene expression patterns associated with determination of specific C. albicans morphologies has remained obscure. Using a strain that can be genetically manipulated to sequentially transition from yeast to pseudohyphae to hyphae in the absence of complex environmental cues and upstream signaling pathways, we demonstrate by whole-genome transcriptional profiling that genes associated with pseudohyphae represent a subset of those associated hyphae and are generally expressed at lower levels; interestingly, no genes appeared to be expressed exclusively in pseudohyphae. more...
Organism:
Candida albicans
Type:
Expression profiling by array
Platform:
GPL15843
136 Samples
Download data: CSV, GPR
Series
Accession:
GSE39677
ID:
200039677
9.

The APSES Transcription factor Efg1 regulates a novel phenotype switch in Candida parapsilosis.

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Candida parapsilosis
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL16091
14 Samples
Download data
Series
Accession:
GSE41065
ID:
200041065
10.

The APSES Transcription factor Efg1 regulates a novel phenotype switch in Candida parapsilosis [RNA-seq].

(Submitter supplied) In Candida albicans the Efg1 transcription factor (a member of the APSES family) is an important regulator of hyphal growth, and of the white-to-opaque transition. In contrast, we show that the Efg1 ortholog in Candida parapsilosis is a major regulator of a different morphological switch at the colony level, from a concentric to smooth morphology. The rate of switching is at least 100-fold increased in an efg1 knockout relative to wild type. more...
Organism:
Candida parapsilosis
Type:
Expression profiling by high throughput sequencing
Platform:
GPL16091
8 Samples
Download data: TXT
Series
Accession:
GSE41064
ID:
200041064
11.

The APSES Transcription factor Efg1 regulates a novel phenotype switch in Candida parapsilosis [ChIP-seq].

(Submitter supplied) We use ChIP-seq to identify the targets of Efg1 in Candida parapsilosis. We show that Efg1 binds to 502 promoter regions, including 70 potential transcription factors or regulatory proteins. Several of the transcription factors belong to networks that regulate biofilm development and white-opaque switching in C. albicans. Efg1 also binds to its own promoter. The binding site for C. parapsilosis Efg1 resembles that of orthologs in other fungi. more...
Organism:
Candida parapsilosis
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16091
6 Samples
Download data: FASTA, TXT
Series
Accession:
GSE41063
ID:
200041063
12.

Genome-wide location of Candida albicans transcription factor Skn7p

(Submitter supplied) Skn7 is a conserved fungal heat shock factor-type transcriptional regulator. It participates in maintaining cell wall integrity and regulates the osmotic/oxidative stress response (OSR) in S. cerevisiae, where it is part of a two-component signal transduction system. Here, we comprehensively address the function of Skn7 in the human fungal pathogen Candida albicans. We provide evidence reinforcing functional divergence, with loss of the cell wall/osmotic stress-protective roles and acquisition of the ability to regulate morphogenesis on solid medium. more...
Organism:
Candida albicans
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL17892
2 Samples
Download data: GPR
Series
Accession:
GSE85276
ID:
200085276
13.

Genome-wide expression profiling of Candida albicans transcription factor Skn7p

(Submitter supplied) Skn7 is a conserved fungal heat shock factor-type transcriptional regulator. It participates in maintaining cell wall integrity and regulates the osmotic/oxidative stress response (OSR) in S. cerevisiae, where it is part of a two-component signal transduction system. Here, we comprehensively address the function of Skn7 in the human fungal pathogen Candida albicans. We provide evidence reinforcing functional divergence, with loss of the cell wall/osmotic stress-protective roles and acquisition of the ability to regulate morphogenesis on solid medium. more...
Organism:
Candida albicans
Type:
Expression profiling by array
Platform:
GPL19932
16 Samples
Download data: GPR
Series
Accession:
GSE85275
ID:
200085275
14.

The Ndr/LATS kinase Cbk1 regulates a specific subset of Ace2 functions and suppresses the hyphae-to-yeast transition in Candida albicans

(Submitter supplied) The Regulation of Ace2 and Morphogenesis (RAM) pathway is an important regulatory network in the human fungal pathogen Candida albicans. The RAM pathway’s two most well-studied components, the NDR/Lats kinase Cbk1 and its putative substrate, the transcription factor Ace2, have a wide range of phenotypes and functions. It is not clear, however, which of these functions are specifically due to the phosphorylation of Ace2 by Cbk1. more...
Organism:
Candida albicans
Type:
Expression profiling by high throughput sequencing
Platform:
GPL28323
18 Samples
Download data: CSV, XLSX
Series
Accession:
GSE155450
ID:
200155450
15.

A metabolic checkpoint controls hyphal development in Candida albicans via nitric oxide signaling

(Submitter supplied) We investigated the roles of mitochondrial dynamics in hyphal growth of C. albicans using the small molecule inhibitor MDIVI-1. Strikingly, the small molecule inhibitor represses both the yeast-to hyphae transition and ongoing filamentation, and its effects on morphogenesis can be uncoupled from general growth inhibition. RNAseq experiments of inhibitor-treated cells coupled with Candida mutant analyses suggest the existence of a novel mechanism of action to represses hyphal growth. more...
Organism:
Candida albicans
Type:
Expression profiling by high throughput sequencing
Platform:
GPL23573
28 Samples
Download data: CSV
Series
Accession:
GSE105148
ID:
200105148
16.

Functional divergence of a global regulatory complex governing fungal filamentation

(Submitter supplied) Morphogenetic transitions are prevalent in the fungal kingdom. For a leading human fungal pathogen, Candida albicans, the capacity to transition between yeast and filaments is key for virulence. For the model yeast Saccharomyces cerevisiae, filamentation enables nutrient acquisition. A recent functional genomic screen in S. cerevisiae identified Mfg1 as a regulator of morphogenesis that acts in complex with Flo8 and Mss11 to enable transcriptional responses crucial for filamentation. more...
Organism:
Candida albicans
Type:
Genome binding/occupancy profiling by genome tiling array; Expression profiling by array
Platforms:
GPL10636 GPL9818
21 Samples
Download data: TXT
Series
Accession:
GSE117477
ID:
200117477
17.

Experimental annotation of the human pathogen Candida albicans coding and noncoding transcribed regions using high resolution tiling arrays

(Submitter supplied) Compared to other model organisms and despite the clinical relevance of the pathogenic yeast Candida albicans, no comprehensive analysis has been done to provide experimental support of its in silico-based genome annotation. Here we have undertaken a genome-wide experimental annotation to accurately uncover the transcriptional landscape of the pathogenic yeast C. albicans using strand-specific high-density tiling arrays. more...
Organism:
Candida albicans
Type:
Expression profiling by genome tiling array; Genome binding/occupancy profiling by genome tiling array
Platforms:
GPL10636 GPL10637
12 Samples
Download data: TXT
Series
Accession:
GSE22625
ID:
200022625
18.

The zinc cluster transcription factor Ahr1p directs Mcm1p regulation of Candida albicans adhesion

(Submitter supplied) Biofilm development by Candida albicans requires cell adhesion for the initial establishment of the biofilm and the continued stability after hyphal development occurs; however, the regulation of the process has not been fully established. Using chromatin immunoprecipitation coupled to microarray analysis (ChIP-chip) we have characterized a regulon containing the Mcm1p factor that is required for the initial surface adhesion during biofilm formation. more...
Organism:
Candida albicans
Type:
Expression profiling by array; Genome binding/occupancy profiling by genome tiling array
Platforms:
GPL10637 GPL9818
7 Samples
Download data: TXT
Series
Accession:
GSE25174
ID:
200025174
19.

Expression of C. albicans genes during GI tract colonization and influence of efg1, efh1 and cph1 mutations

(Submitter supplied) The goals of this study were to identify the Efg1p-regulon during GI tract colonization and to compare C. albicans gene expression during colonization of different organs of the GI tract. Our results identified significant differences in gene expression between cells colonizing the cecum and ileum. In addition, during laboratory growth, efg1- null mutant cells grew to a higher density than WT cells. more...
Organism:
Candida albicans
Type:
Expression profiling by array
Platform:
GPL9818
44 Samples
Download data: TXT
Series
Accession:
GSE41771
ID:
200041771
20.

Regulation of the biofilm-specific genes circuitry in Candida albicans by a novel histone H3 variant

(Submitter supplied) To understand the biological relevance of the role played by the HHT1 histone H3 variant in C. albicans, we performed a transcriptome analysis of the mutant by global gene expression array analysis. We analyzed gene expression profile of the mutant in strains LR107 and LR108 (hht1∆/hht1∆) and the parent wild type (SC5314) strain grown in YPD liquid medium at 30°C. In the microarray analysis, a total of 1222 genes were found to be expressed significantly different (fold change < 1.5 at p-value < 0.05) between wild type and two hht1 null mutants. more...
Organism:
Candida albicans
Type:
Expression profiling by array
Platform:
GPL20624
8 Samples
Download data: TXT
Series
Accession:
GSE72824
ID:
200072824
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=3|qty=3|blobid=MCID_669079d0097f45704735ba79|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center