U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Transcriptome Sequencing During Mouse Brain Development Identifies Long Non-Coding RNAs Functionally Involved in Neurogenic Commitment

(Submitter supplied) Transcriptome analysis of somatic stem cells and their progeny is fundamental to identify new factors controlling proliferation versus differentiation during tissue formation. Here we generated a combinatorial, fluorescent reporter mouse line to isolate proliferating neural stem cells, differentiating progenitors and newborn neurons that coexist as intermingled cell populations during brain development. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
9 Samples
Download data: TXT
Series
Accession:
GSE51606
ID:
200051606
2.

Comprehensive Identification of Long Non-coding RNAs in Purified Cell Types from the Brain Reveals Functional LncRNA in OPC Fate Determination

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
8 Samples
Download data
Series
Accession:
GSE74648
ID:
200074648
3.

Comprehensive Identification of Long Non-coding RNAs in Purified Cell Types from the Brain Reveals Functional LncRNA in OPC Fate Determination (RNA-Seq of differentiated NSC after lnc-OPC knockdown)

(Submitter supplied) To quantitative analysis of transcriptome changes caused by lnc-OPC knockdown during OPC differentiation from NSC, lentivirus-based short hairpin RNAs were used to knockdown the lnc-OPC expression in a neural stem cell culture . Subsequently, puromycin-selected NSCs were differentiated to OPC in culture for three days.RNA-Seq was performed on the polyadenylated fraction of RNA isolated from cell samples. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
4 Samples
Download data: XLSX
Series
Accession:
GSE74647
ID:
200074647
4.

Comprehensive Identification of Long Non-coding RNAs in Purified Cell Types from the Brain Reveals Functional LncRNA in OPC Fate Determination (OLIG2 Chromatin immunoprecipitation sequencing (ChIP-Seq) in mouse neural stem cells)

(Submitter supplied) To better understand the OLIG2 binding site in the whole-genome of mouse neural stem cells, ChIP was performed using 107 mouse neural stem cells. The ChIP-Seq library was constructed by using DNA SMART ChIP-Seq Kit according to the manufacturer's instructions (Clontech) and was sequenced on the Illumina HiSeq 2000 Sequencer.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: XLSX
Series
Accession:
GSE74646
ID:
200074646
5.

Comprehensive Identification of Long Non-coding RNAs in Purified Cell Types from the Brain Reveals Functional LncRNA in OPC Fate Determination (RNA-Seq of mouse neural stem cells)

(Submitter supplied) To better understand the transcriptome of mouse neural stem cells (including known genes and novel long non coding RNA genes), RNA-Seq was performed on the polyadenylated fraction of RNA isolated from cell samples. Read mapping and transcriptome construction were done by using optimized pipeline which integrate Tophat followed by Cufflinks.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: XLSX
Series
Accession:
GSE74643
ID:
200074643
6.

The PTBP1-associated long noncoding RNA Pnky regulates embryonic and postnatal neural stem cells

(Submitter supplied) While thousands of long noncoding RNAs (lncRNAs) have been identified, few lncRNAs that control neural stem cell (NSC) behavior are known. Here, we identify Pinky (Pnky) as a novel, neural-specific lncRNA that regulates neurogenesis from NSCs in the embryonic and postnatal brain. In postnatal NSCs, Pnky knockdown potentiates neuronal lineage commitment and expands the transit-amplifying cell population, increasing neuron production several-fold. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
6 Samples
Download data: DIFF, TXT
Series
Accession:
GSE65542
ID:
200065542
7.

Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by array; Non-coding RNA profiling by array
4 related Platforms
32 Samples
Download data: BED, CALLS, PAIR, TSV
Series
Accession:
GSE45282
ID:
200045282
8.

Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo [lncRNA Array]

(Submitter supplied) Long noncoding RNAs (lncRNAs) have been described in cell lines and various whole tissues, but lncRNA analysis of development in vivo is limited. Here, we comprehensively analyze lncRNA expression for the adult mouse subventricular zone neural stem cell lineage. We utilize complementary genome-wide techniques including RNA-seq, RNA CaptureSeq, and ChIP-seq to associate specific lncRNAs with neural cell types, developmental processes, and human disease states. more...
Organism:
Mus musculus
Type:
Non-coding RNA profiling by array
Platform:
GPL16745
12 Samples
Download data: CALLS, PAIR
Series
Accession:
GSE45281
ID:
200045281
9.

Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo [expression]

(Submitter supplied) Long noncoding RNAs (lncRNAs) have been described in cell lines and various whole tissues, but lncRNA analysis of development in vivo is limited. Here, we comprehensively analyze lncRNA expression for the adult mouse subventricular zone neural stem cell lineage. We utilize complementary genome-wide techniques including RNA-seq, RNA CaptureSeq, and ChIP-seq to associate specific lncRNAs with neural cell types, developmental processes, and human disease states. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL15887
11 Samples
Download data: CALLS, PAIR
Series
Accession:
GSE45280
ID:
200045280
10.

Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo [ChIP-seq]

(Submitter supplied) Long noncoding RNAs (lncRNAs) have been described in cell lines and various whole tissues, but lncRNA analysis of development in vivo is limited. Here, we comprehensively analyze lncRNA expression for the adult mouse subventricular zone neural stem cell lineage. We utilize complementary genome-wide techniques including RNA-seq, RNA CaptureSeq, and ChIP-seq to associate specific lncRNAs with neural cell types, developmental processes, and human disease states. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL11002
3 Samples
Download data: BED
Series
Accession:
GSE45279
ID:
200045279
11.

Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo [RNA-seq]

(Submitter supplied) Long noncoding RNAs (lncRNAs) have been described in cell lines and various whole tissues, but lncRNA analysis of development in vivo is limited. Here, we comprehensively analyze lncRNA expression for the adult mouse subventricular zone neural stem cell lineage. We utilize complementary genome-wide techniques including RNA-seq, RNA CaptureSeq, and ChIP-seq to associate specific lncRNAs with neural cell types, developmental processes, and human disease states. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11002
5 Samples
Download data: BED, TXT
Series
Accession:
GSE45278
ID:
200045278
12.

Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo [RNA CaptureSeq]

(Submitter supplied) Long noncoding RNAs (lncRNAs) have been described in cell lines and various whole tissues, but lncRNA analysis of development in vivo is limited. Here, we comprehensively analyze lncRNA expression for the adult mouse subventricular zone neural stem cell lineage. We utilize complementary genome-wide techniques including RNA-seq, RNA CaptureSeq, and ChIP-seq to associate specific lncRNAs with neural cell types, developmental processes, and human disease states. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL16815
1 Sample
Download data: BED, TSV
Series
Accession:
GSE45277
ID:
200045277
13.

Assessment and site-specific manipulation of DNA (hydroxy-)methylation during mouse corticogenesis

(Submitter supplied) Purpose: In this study we investigated the molecular role of cytosine modification in the developing cortex of mice. To this aim we isolated thee linage related cell populations of the developing cortex and mapped both, 5mC as well as 5hmC on a genome-wide scale. Furthermore we established a system to site-specifcally demethylate DNA by using a dCas9-Tet1 fusion protein. Methods: Neuronal stem cells (Btg2-/Tubb3-), neurogenic progenitors (Btg2+/Tubb3-) and neurons (Tubb3+) were isolated from E14.5 Btg2-RFP/Tubb3-GFP double heterozygous mouse embryos (Aprea et al. more...
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL17021
12 Samples
Download data: BW, TXT
Series
Accession:
GSE104585
ID:
200104585
14.

microRNA profiling of mouse cortical progenitors and neurons reveals miR-486-5p as a regulator of neurogenesis

(Submitter supplied) MicroRNAs (miRNAs) are short (~22 nt) single-stranded non-coding RNAs that regulate gene expression at the post-transcriptional level. Over the past years, many studies have extensively characterized the involvement of miRNA-mediated regulation in neurogenesis and brain development. However, a comprehensive catalog of cortical miRNAs cell-specifically expressed in progenitor types of the developing mammalian cortex is still missing. more...
Organism:
Mus musculus
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL17021
9 Samples
Download data: TXT
Series
Accession:
GSE142253
ID:
200142253
15.

Regulation of neuronal commitment in mouse embryonic stem cells by the Reno/Bahcc1 locus

(Submitter supplied) Regulation of neuronal commitment in mouse embryonic stem cells by the Reno/Bahcc1 locus
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL19057 GPL24247
77 Samples
Download data: BW, NARROWPEAK, TXT
Series
Accession:
GSE124517
ID:
200124517
16.

Neonatal Heart Maturation (NHM) SuperSeries GSE85728

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Non-coding RNA profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL21103
34 Samples
Download data: TXT
Series
Accession:
GSE85728
ID:
200085728
17.

Decoding the Long Noncoding RNA during Cardiac Maturation: a Roadmap for Functional Discovery [RNA]

(Submitter supplied) Cardiac maturation during perinatal transition of heart is critical for functional adaptation to hemodynamic load and nutrient environment. Perturbation in this process has major implications in congenital heart defects (CHDs). Transcriptome programming during perinatal stages is important information but incomplete in current literature, particularly, the expression profiles of the long noncoding RNAs (lncRNAs) are not fully elucidated
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21103
17 Samples
Download data: TXT
Series
Accession:
GSE85727
ID:
200085727
18.

Decoding the Long Noncoding RNA during Cardiac Maturation: a Roadmap for Functional Discovery [lncRNA]

(Submitter supplied) Cardiac maturation during perinatal transition of heart is critical for functional adaptation to hemodynamic load and nutrient environment. Perturbation in this process has major implications in congenital heart defects (CHDs). Transcriptome programming during perinatal stages is important information but incomplete in current literature, particularly, the expression profiles of the long noncoding RNAs (lncRNAs) are not fully elucidated
Organism:
Mus musculus
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL21103
17 Samples
Download data: TXT
Series
Accession:
GSE85726
ID:
200085726
19.

Single-cell RNA-seq reveals differentiation hierarchy of normal human bone marrow and a distinct transcriptome signature of aneuploid cells

(Submitter supplied) In order to get a better understanding of the gene signature of aneuploid cells, we applied single cell RNA sequencing on human bone marrow cells from healthy donors and patients with bone marrow failure and cytogenetic abnormalities. We chacterized normal hemaopoiesis as binary differentiation and identified aneuploid cells from patient samples.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL21290 GPL16791
1202 Samples
Download data: CSV, GTF
Series
Accession:
GSE99095
ID:
200099095
20.

Single Cell Analysis Reveals Unexpected Transcriptional Heterogeneity of Neural Progenitors in the Developing Human Cortex

(Submitter supplied) The human cerebral cortex depends for its normal development and size on a precisely controlled balance between self-renewal and differentiation of diverse neural progenitor cells. Specialized progenitors that are common in humans, but virtually absent in rodents, called ‘outer radial glia’ (ORG), have been suggested to be crucial to the evolutionary expansion of the human cortex. We combined cell type-specific sorting with transcriptome-wide RNA-sequencing to identify genes enriched in human ORG, including targets of the transcription factor Neurogenin, and previously uncharacterized, evolutionarily dynamic, long noncoding RNAs. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11154
9 Samples
Download data: FPKM_TRACKING
Series
Accession:
GSE66217
ID:
200066217
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=3|qty=3|blobid=MCID_670e5021c7d3ca20d5e72e9d|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center