U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

DNA methylation from a Type I restriction modification system influences gene expression and virulence in Streptococcus pyogenes

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Streptococcus pyogenes
Type:
Expression profiling by high throughput sequencing; Methylation profiling by high throughput sequencing
Platforms:
GPL26590 GPL24912
7 Samples
Download data: HTML, TXT
Series
Accession:
GSE130429
ID:
200130429
2.

DNA methylation from a Type I restriction modification system influences gene expression and virulence in Streptococcus pyogenes [PacBio]

(Submitter supplied) We used Pacific Biosciences Single Molecule Real-Time sequencing platform to identify modified motifs in an RM deficient strain of Streptococcus pyogenes
Organism:
Streptococcus pyogenes
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL26590
1 Sample
Download data: HTML, TXT
Series
Accession:
GSE130428
ID:
200130428
3.

DNA methylation from a Type I restriction modification system influences gene expression and virulence in Streptococcus pyogenes [RNA-seq]

(Submitter supplied) We used Illumina NGS to measure mRNA levels and perform subsequent differential expression analysis between wild type and RM system deficient strains of Streptococcus pyogenes
Organism:
Streptococcus pyogenes
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24912
6 Samples
Download data: CSV, TXT
Series
Accession:
GSE130427
ID:
200130427
4.

Transcriptome study of the covS-regulation of a Group A Streptococcus pyogenes M23ND

(Submitter supplied) We investigated the covS-regulation of S. pyogenes in a hypervirulent M23 strain using RNA-sequencing. The differential gene expression comparison between the covS- mutant and isogenic wild type covS+ identified altered expression of 349 (18%) genes, including a broad spectrum of virulence genes and diverse metabolic genes. The data showed that the strain achieved hypervirulence by enhancing the expression of genes responsible for invasiveness and antiphagocytosis (i.e., hasABC), by abrogating the expression of toxic genes (i.e., speB), and by compromising gene products with dispensable functions (i.e., sfb1). more...
Organism:
Streptococcus pyogenes
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19982
8 Samples
Download data: XLS
Series
Accession:
GSE67533
ID:
200067533
5.

New Pathogenesis Mechanisms and Translational Leads Identified by Multidimensional Analysis of Necrotizing Myositis in Primates

(Submitter supplied) Purpose: We used dual RNA-seq to analyze the transcriptomes of serotype M1 S. pyogenes and host skeletal muscle recovered contemporaneously from infected nonhuman primates (NHPs). We identified genes important for necrotizing myositis, made isogenic deletion mutants and performed RNA-seq comparing one of those deletion mutant strains (dahA) grown in vitro and compared to its parental wild-type strain. more...
Organism:
Streptococcus pyogenes; Macaca fascicularis
Type:
Expression profiling by high throughput sequencing
4 related Platforms
54 Samples
Download data: XLSX
Series
Accession:
GSE144100
ID:
200144100
6.

Improved transformation efficiency of group A Streptococcus by inactivation of a type I restriction modification system

(Submitter supplied) Streptococcus pyogenes or group A Streptococcus (GAS) is a leading cause of bacterial pharyngitis, skin and soft tissue infections, life-threatening invasive infections, and the post-infectious autoimmune syndromes of acute rheumatic fever and post-streptococcal glomerulonephritis. Genetic manipulation of this important pathogen is complicated by resistance of the organism to genetic transformation. more...
Organism:
Streptococcus pyogenes
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24880
6 Samples
Download data: TSV
Series
Accession:
GSE167217
ID:
200167217
7.

Phosphorylation events in the Multiple Gene Regulator of Group A Streptococcus (Mga) Significantly Influences Global Gene Expression and Virulence.

(Submitter supplied) We sought understand the molecular mehcanism of gene regulation by Mga and its contribution to GAS pathogenesis in serotype M59 GAS through whole transcriptome analysis of strains with phosphorylation mimicking substitutions in key histidine residues of Mga.
Organism:
Streptococcus pyogenes MGAS15252
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20059
18 Samples
Download data: XLSX
Series
Accession:
GSE67988
ID:
200067988
8.

Whole genome transcriptome analysis of serotype M1 Group A Streptococcus (Streptococcus pyogenes) wild type and isogenic FabT mutants grown at 35C and 40C.

(Submitter supplied) The goal was to perform global transcriptome analysis on isogenic wild type 2221 and FabT deletion mutant M1 strains to investigate how inactivation of the fabT gene affects gene expression.
Organism:
Streptococcus pyogenes
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20656
24 Samples
Download data: XLSX
Series
Accession:
GSE86854
ID:
200086854
9.

Comparison of gene expression in the GAS M1T1 strain 5448, wild-type vs pepO mutant

(Submitter supplied) Manuscript title: The endopeptidase PepO regulates the SpeB cysteine protease and is essential for the virulence of invasive M1T1 Streptococcus pyogenes. The study investigates the effect of pepO mutation on global gene expression in GAS M1T1 strain 5448.
Organism:
Streptococcus pyogenes
Type:
Expression profiling by array
Platform:
GPL19152
3 Samples
Download data: TXT, XLSX
Series
Accession:
GSE108748
ID:
200108748
10.

Genomic N6-methyladenosine promotes expression of genes important for chromosome maintenance in bacteria

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Bacillus subtilis PY79; Bacillus subtilis
Type:
Methylation profiling by high throughput sequencing
Platforms:
GPL26622 GPL26620
5 Samples
Download data: CSV
Series
Accession:
GSE130695
ID:
200130695
11.

Genomic N6-methyladenosine promotes expression of genes important for chromosome maintenance in bacteria [pacbio_DnmA2]

(Submitter supplied) We used Pacific Biosciences Single Molecule Real-Time sequencing platform to identify m6A modifications and putative methyltransferases in Bacillus subtilis
Organism:
Bacillus subtilis
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL26622
1 Sample
Download data: CSV
Series
Accession:
GSE130694
ID:
200130694
12.

Genomic N6-methyladenosine promotes expression of genes important for chromosome maintenance in bacteria [pacbio_DnmA]

(Submitter supplied) We used Pacific Biosciences Single Molecule Real-Time sequencing platform to identify m6A modifications and putative methyltransferases in Bacillus subtilis
Organism:
Bacillus subtilis PY79
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL26620
4 Samples
Download data: CSV
Series
Accession:
GSE130693
ID:
200130693
13.

Expression analysis of Streptococcus pyogenes isolate SF370 and its rgg2 mutant

(Submitter supplied) Differences in gene expression between the wild-typ SF370 and its rgg2 mutant was identified with samples collected from mid-exponential and post-exponential phases of growth
Organism:
Streptococcus pyogenes M1 GAS; Streptococcus pyogenes NZ131
Type:
Expression profiling by array
Platform:
GPL11420
12 Samples
Download data
Series
Accession:
GSE57462
ID:
200057462
14.

Microarray analysis of Rgg-dependent transcriptional regulation in NZ131 Streptococcus pyogenes strain

(Submitter supplied) Streptococcus pyogenes growth-phase dependent and Rgg-dependent transcription was analyzed Keywords: transcriptional regulation
Organism:
Streptococcus pyogenes
Type:
Expression profiling by array
Platform:
GPL3312
9 Samples
Download data
Series
Accession:
GSE3989
ID:
200003989
15.

Transcriptomic analysis of Streptococcus pyogenescolonizing the vaginal mucosa identifies hupY, an MtsR-regulated adhesin involved in heme utilization

(Submitter supplied) Streptococcus pyogenes (Group A Strep, GAS) is a serious human pathogen with the ability to colonize mucosal surfaces such as the nasopharynx and vaginal tract, often leading to infections such as pharyngitis and vulvovaginitis. We present genome-wide RNASeq data showing the transcriptomic changes GAS undergoes during vaginal colonization. These data reveal that the regulon controlled by MtsR, a master metal regulator, is activated during vaginal colonization. more...
Organism:
Streptococcus pyogenes
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20656
6 Samples
Download data: GTF, TXT
Series
Accession:
GSE131982
ID:
200131982
16.

Global gene expression analysis of MGAS10870 serotype of Group A Streptococcus (Streptococcus pyogenes/GAS) in the absence or presence of 100 µM Manganese

(Submitter supplied) The goal was to perform global transcriptome analysis on MGAS10870 serotype to investigate and compare the gene expression alterations between ΔmtsR mutant to WT or WT grown in the presence or absence of 100 µM Manganese (MnCl2) to WT grown in the presence of 100µM Manganese (MnCl2)
Organism:
Streptococcus pyogenes
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20656
9 Samples
Download data: XLSX
Series
Accession:
GSE128534
ID:
200128534
17.

The Epigenomic Landscape of Prokaryotes

(Submitter supplied) DNA methylation is an important regulator of genome function in the eukaryotes, but it is currently unclear if the same is true in prokaryotes. While regulatory functions have been demonstrated for a small number of bacteria, there have been no large-scale studies of prokaryotic methylomes and the full repertoire of targets and biological functions of DNA methylation remains unclear. Here we applied single-molecule, real-time sequencing to directly study the methylomes of 232 phylogenetically diverse prokaryotes. more...
Organism:
Lactococcus lactis subsp. lactis; Lactiplantibacillus plantarum; Lachnobacterium bovis; Clostridium perfringens ATCC 13124; Methanocaldococcus jannaschii DSM 2661; Methylorubrum extorquens AM1; Thermoplasma volcanium GSS1; Acidobacteriaceae bacterium TAA 166; Mycoplasmopsis bovis PG45; Methanospirillum hungatei JF-1; Actinobacillus succinogenes 130Z; Fervidobacterium nodosum Rt17-B1; Bifidobacterium longum subsp. infantis ATCC 15697 = JCM 1222 = DSM 20088; Staphylothermus marinus F1; Thermoanaerobacter sp. X514; Xenorhabdus nematophila ATCC 19061; Galbibacter orientalis; Dyadobacter fermentans DSM 18053; Streptosporangium roseum DSM 43021; Pedobacter heparinus DSM 2366; Rhizobium etli CIAT 652; Meiothermus ruber DSM 1279; Planctopirus limnophila DSM 3776; Methanothermus fervidus DSM 2088; Sebaldella termitidis ATCC 33386; Methanohalophilus mahii DSM 5219; Aminobacterium colombiense DSM 12261; Acidobacteriaceae bacterium KBS 146; Pontibacter actiniarum DSM 19842; Thermobacillus composti KWC4; Marinithermus hydrothermalis DSM 14884; Bernardetia litoralis DSM 6794; Desulfobacca acetoxidans DSM 11109; Rikenella microfusus DSM 15922; Echinicola vietnamensis DSM 17526; Orenia marismortui DSM 5156; Sporocytophaga myxococcoides DSM 11118; Niabella soli DSM 19437; Sinorhizobium medicae WSM1115; Hippea alviniae EP5-r; Hippea sp. KM1; Sphingomonas melonis C3; Methylophilaceae bacterium 11; Thioalkalivibrio sp. ARh3; Thiomonas sp. FB-6; Oxalobacteraceae bacterium AB_14; Solidesulfovibrio cf. magneticus IFRC170; Desulfotignum balticum DSM 7044; Methylobacterium sp. EUR3 AL-11; Kallotenue papyrolyticum; Bryobacter aggregatus MPL3; Ruminococcus albus AD2013; Eubacterium sp. AB3007; Ruminococcaceae bacterium AE2021; Lachnospiraceae bacterium AC2031; Selenomonas ruminantium AC2024; Selenomonas sp. AB3002; Peptostreptococcaceae bacterium VA2; Ruminococcus sp. HUN007; Teredinibacter turnerae; Escherichia coli CFT073; Salmonella bongori NCTC 12419; Treponema denticola ATCC 35405; Akkermansia muciniphila ATCC BAA-835; Phaeobacter inhibens DSM 17395; Actinosynnema mirum DSM 43827; Staphylococcus aureus subsp. aureus USA300_TCH1516; Sphaerobacter thermophilus DSM 20745; Veillonella parvula DSM 2008; Streptobacillus moniliformis DSM 12112; Allomeiothermus silvanus DSM 9946; Sedimentitalea nanhaiensis DSM 24252; Sediminispirochaeta smaragdinae DSM 11293; Hirschia baltica ATCC 49814; Coraliomargarita akajimensis DSM 45221; Syntrophothermus lipocalidus DSM 12680; Stutzerimonas stutzeri RCH2; Syntrophobotulus glycolicus DSM 8271; Bacillus spizizenii str. W23; Phocaeicola salanitronis DSM 18170; Pseudofrankia sp. DC12; Nitratifractor salsuginis DSM 16511; Cellulophaga lytica DSM 7489; Asinibacterium sp. OR53; Solitalea canadensis DSM 3403; Patulibacter minatonensis DSM 18081; Acetobacterium woodii DSM 1030; Nocardia sp. BMG51109; Halomicrobium katesii DSM 19301; Nitriliruptor alkaliphilus DSM 45188; Methylophilus sp. 1; Pseudomonas aeruginosa NCAIM B.001380; Kangiella aquimarina DSM 16071; Pelobacter seleniigenes DSM 18267; Thiomicrospira pelophila DSM 1534; Desulfurobacterium sp. TC5-1; Bacteroides sp. 14(A); Clostridium sp. 12(A); Hydrogenovibrio kuenenii DSM 12350; Leptolyngbya sp. PCC 6406; Maribacter sp. Hel_I_7; Desulfospira joergensenii DSM 10085; Tolumonas lignilytica; Cellvibrionaceae bacterium 1162T.S.0a.05; Lacrimispora indolis SR3; Lacrimispora indolis DSM 755; Desulforegula conservatrix Mb1Pa; Oceanicola sp. HL-35; Algoriphagus marincola HL-49; Desulfohalovibrio reitneri; Alicyclobacillus macrosporangiidus CPP55; Pseudacidobacterium ailaaui; Mediterraneibacter gnavus AGR2154; Sediminibacter sp. Hel_I_10; Hydrogenovibrio sp. MA2-6; Pseudobutyrivibrio ruminis HUN009; Lachnoclostridium phytofermentans KNHs212; Robinsoniella sp. KNHs210; Enterococcus gallinarum; Clostridium algidicarnis; Pyrococcus horikoshii OT3; Methylocystis sp. LW5; Agrobacterium fabrum str. C58; Persephonella; Mastigocladopsis repens PCC 10914; Neisseria gonorrhoeae FA 1090; Clostridioides difficile 630; Thiobacillus denitrificans ATCC 25259; Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150; Sulfurimonas denitrificans DSM 1251; Sulfolobus acidocaldarius DSM 639; Flavobacterium psychrophilum JIP02/86; Methanocorpusculum labreanum Z; Cronobacter; Pseudarthrobacter chlorophenolicus A6; Saccharomonospora viridis DSM 43017; Verrucomicrobia bacterium LP2A; Thermanaerovibrio acidaminovorans DSM 6589; Corynebacterium aurimucosum ATCC 700975; Zymomonas mobilis subsp. pomaceae ATCC 29192; Klebsiella aerogenes FGI35; Cellulophaga algicola DSM 14237; Flexistipes sinusarabici DSM 4947; Sulfurospirillum barnesii SES-3; Gillisia limnaea DSM 15749; Spirochaeta thermophila DSM 6578; Ruminococcus sp. NK3A76; Spirochaeta africana DSM 8902; Holophaga foetida DSM 6591; Salmonella enterica subsp. enterica serovar Paratyphi B str. SPB7; Acetivibrio clariflavus 4-2a; Thermacetogenium phaeum DSM 12270; Methylophilus sp. 5; Arthrobacter sp. 31Y; Methylophilus sp. 42; Methylotenera versatilis 79; Psychrilyobacter atlanticus DSM 19335; Prevotella sp. 10(H); Methylotenera sp. 73s; Acidovorax sp. JHL-3; Gillisia sp. JM1; Cellulomonas sp. KRMCY2; Clostridium sp. ASBs410; Limisalsivibrio acetivorans; Polaromonas sp. EUR3 1.2.1; Levilactobacillus brevis AG48; Pediococcus acidilactici AGR20; Exiguobacterium chiriqhucha; Prevotella sp. HUN102; Flavimarina sp. Hel_I_48; Lachnospiraceae bacterium AC2012; Clostridioides mangenotii LM2; Exiguobacterium aurantiacum DSM 6208; Exiguobacterium acetylicum DSM 20416; Exiguobacterium oxidotolerans JCM 12280; Exiguobacterium antarcticum DSM 14480; Methylobacter tundripaludum 21/22; Lachnoclostridium phytofermentans KNHs2132; Staphylococcus epidermidis AG42; Butyrivibrio sp. AE3003; Streptococcus equinus; Salmonella enterica subsp. arizonae serovar 62:z4,z23:-; Xylella fastidiosa Temecula1; Acetivibrio thermocellus ATCC 27405; Rhodopseudomonas palustris CGA009; Neisseria meningitidis FAM18; Thermoplasma acidophilum DSM 1728; Hydrogenovibrio crunogenus XCL-2; Chloroflexus aggregans DSM 9485; Thermosipho melanesiensis BI429; Shewanella woodyi ATCC 51908; Bradyrhizobium elkanii USDA 76; Dinoroseobacter shibae DFL 12 = DSM 16493; Parabacteroides distasonis ATCC 8503; Anoxybacillus flavithermus WK1; Escherichia coli str. K-12 substr. MG1655; Capnocytophaga ochracea DSM 7271; Haloterrigena turkmenica DSM 5511; Palaeococcus ferrophilus DSM 13482; Acetivibrio thermocellus DSM 1313; Gracilinema caldarium DSM 7334; Treponema succinifaciens DSM 2489; Caldithrix abyssi DSM 13497; Calidithermus chliarophilus DSM 9957; Cohnella panacarvi Gsoil 349; Methylobacterium sp. 10; Xanthobacter sp. 91; Geopsychrobacter electrodiphilus DSM 16401; Hydrogenovibrio marinus DSM 11271; Nocardia sp. BMG111209; Klebsiella oxytoca BRL6-2; Polaribacter sp. Hel_I_88; Methylohalobius crimeensis 10Ki; Streptomyces sp. WMMB 714; Ruminiclostridium josui JCM 17888; Alteromonas sp. ALT199; Aminiphilus circumscriptus DSM 16581; Caldicoprobacter oshimai DSM 21659; Microbacterium sp. KROCY2; Thermogemmatispora carboxidivorans; Ruminococcus flavefaciens AE3010; Butyrivibrio sp. FCS014; Polycyclovorans algicola TG408; Clostridium sp. KNHs205; Lachnospiraceae bacterium AC2029; Enterococcus faecalis 68A; Butyrivibrio sp. AE3004; Teredinibacter purpureus
Type:
Methylation profiling by high throughput sequencing
228 related Platforms
237 Samples
Download data: CSV, GFF
Series
Accession:
GSE69872
ID:
200069872
18.

Effects of RNase Y mutation on operon organization of Streptococcus pyogenes NZ131

(Submitter supplied) Purpose: RNase Y is a major enzyme responsible for mRNA degradation in Streptococcus pyogenes. The goals of this study are to understand whether RNase Y plays a role in operon transcription of S. pyogenes NZ131 by using RNA-seq analysis. Methods: S. pyogenes mRNA profiles of wild type (WT) and RNase Y mutant (∆rny) were generated by deep sequencing, in duplicate, using Illumina Hiseq 2000. The sequence reads were aligned to the S. more...
Organism:
Streptococcus pyogenes
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18784
4 Samples
Download data: CSV
Series
Accession:
GSE99533
ID:
200099533
19.

Multiple roles of RNase Y in Streptococcus pyogenes mRNA metabolism

(Submitter supplied) Streptococcus pyogenes (Group A streptococcus, GAS) is an important human pathogen that causes a variety of infectious diseases and sequelae. Recent studies showed virulence factor expression was controlled at multiple levels, including the post-transcriptional regulation. In this study, we examined the global half-lives of S. pyogenes mRNAs and explored the role RNase Y played in mRNA metabolism with microarray analysis. more...
Organism:
Streptococcus pyogenes; Streptococcus pyogenes NZ131
Type:
Expression profiling by array
Platform:
GPL11420
20 Samples
Download data: CEL
Series
Accession:
GSE40198
ID:
200040198
20.

Testing the impact of Type I Restriction Modification Systems on Gene Expression in Uropathogenic Escherichia coli

(Submitter supplied) Background: DNA methylation influences transcriptional regulation, and therefore cellular phenotype, across all domains of life. The regulatory role of DNA methylation and other epigenetic marks also extends to virulence; both orphan methyltransferases and those from restriction modification systems (RMSs) have been co-opted to regulate virulence in many bacteria. However, functional characterisation of DNA methylation mediated by archetypal Type I RMSs remains limited. more...
Organism:
Escherichia coli str. K-12 substr. MG1655; Escherichia coli UTI89; Escherichia coli CFT073
Type:
Expression profiling by high throughput sequencing
7 related Platforms
64 Samples
Download data: XLSX
Series
Accession:
GSE165421
ID:
200165421
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=237|blobid=MCID_673448fc951b4d01ee1e6c76|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center