U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Evolutionary rewiring of wheat abiotic stress responsive network by lineage-specific transposable elements [DAP-Seq]

(Submitter supplied) The yield of wheat is highly impacted by environmental stresses. The combinatorial regulation of sequence-specific transcription factors(TFs) defines a regulatory network that underlies plant stress responses. Here we created a comprehensive catalog of genomic binding sites of 115 TFs underlying abiotic stress responses by leveraging DAP-seq in Triticum Urartu, along with epigenomic profiles. The majority of gene distant TF binding sites(TFBS) are embedded in transposable elements(TEs), whose functional relevance was supported by a signature of purifying selection and active epigenomic features. more...
Organism:
Triticum urartu
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL29754
119 Samples
Download data: BW, TXT
Series
Accession:
GSE167227
ID:
200167227
2.

Evolutionary rewiring of wheat abiotic stress responsive network by lineage-specific transposable elements [ChIP-Seq]

(Submitter supplied) The yield of wheat is highly impacted by environmental stresses. The combinatorial regulation of sequence-specific transcription factors(TFs) defines a regulatory network that underlies plant stress responses. Here we created a comprehensive catalog of genomic binding sites of 115 TFs underlying abiotic stress responses by leveraging DAP-seq in Triticum Urartu, along with epigenomic profiles. The majority of gene distant TF binding sites(TFBS) are embedded in transposable elements(TEs), whose functional relevance was supported by a signature of purifying selection and active epigenomic features. more...
Organism:
Triticum urartu
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL29754
2 Samples
Download data: BW, XLS
Series
Accession:
GSE182693
ID:
200182693
3.

Evolutionary rewiring of wheat abiotic stress responsive network by lineage-specific transposable elements

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Triticum urartu
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Methylation profiling by high throughput sequencing
Platforms:
GPL29754 GPL29755
146 Samples
Download data: BW, TXT, XLS
Series
Accession:
GSE167229
ID:
200167229
4.

Evolutionary rewiring of wheat abiotic stress responsive network by lineage-specific transposable elements I

(Submitter supplied) The yield of wheat is highly impacted by environmental stresses. The combinatorial regulation of sequence-specific transcription factors(TFs) defines a regulatory network that underlies plant stress responses. Here we created a comprehensive catalog of genomic binding sites of 115 TFs underlying abiotic stress responses by leveraging DAP-seq in Triticum Urartu, along with epigenomic profiles. The majority of gene distant TF binding sites(TFBS) are embedded in transposable elements(TEs), whose functional relevance was supported by a signature of purifying selection and active epigenomic features. more...
Organism:
Triticum urartu
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Methylation profiling by high throughput sequencing
Platforms:
GPL29755 GPL29754
25 Samples
Download data: BW, TXT
Series
Accession:
GSE167228
ID:
200167228
5.

Widespread contribution of transposable elements to the innovation of gene regulatory networks [mouse ENCODE]

(Submitter supplied) Transposable elements (TE) have been shown to contrain functional transcription factor (TF) binding sites for long, but the extent to which TEs contribute TF binding sites is not well know. Here, we comprehensively mapped binding sites for 26 pairs of orthologous TFs, in two pairs of human and mouse cell lines (i.e., leukemia, and lymphoblast), along with epigenomic profiles representing DNA methylation and six histone modifications. more...
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL15103
4 Samples
Download data: BIGWIG
6.

Widespread contribution of transposable elements to the innovation of gene regulatory networks [human ENCODE]

(Submitter supplied) Transposable elements (TE) have been shown to contrain functional transcription factor (TF) binding sites for long, but the extent to which TEs contribute TF binding sites is not well know. Here, we comprehensively mapped binding sites for 26 pairs of orthologous TFs, in two pairs of human and mouse cell lines (i.e., leukemia, and lymphoblast), along with epigenomic profiles representing DNA methylation and six histone modifications. more...
Organism:
Homo sapiens
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL15433
4 Samples
Download data: BIGWIG
Series
Accession:
GSE56774
ID:
200056774
7.

Death and birth of transposable elements underlie subgenome convergent and divergent transcription in common wheat

(Submitter supplied) Common wheat (T. aestivum) converged three subgenomes adapted to different environments. The combinatorial interaction between transcription factors (TFs) and regulatory elements (REs) defines a regulatory circuit that underlies subgenome convergence and divergence. Compared to the relatively conserved gene composition across subgenomes, the intergenic regions with abundant REs is drastically diversified by almost complete TE turnovers, raising major questions regarding how subgenome convergent and divergent regulation is encoded in the highly diversified intergenic regions, and the impact of TE evolution on regulatory conservation and innovation. more...
Organism:
Triticum aestivum
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL25409
194 Samples
Download data: BED, BW
Series
Accession:
GSE192815
ID:
200192815
8.

Small RNAs in transgenic TaNAM-RNAi wheat plants

(Submitter supplied) To explore the effect of stable RNAi on the small RNA (sRNA) population in wheat, we constructed a sRNA library from hexaploid wheat that expresses an RNAi construct under the 35S promoter that targets the endogenous NO APICAL MERISTEM (TaNAM) gene. The presence of this RNAi transgene causes a 40% reduction in expression of the target genes as measured by quantitative RT-PCR and significantly delays senescence and reduces remobilization of N, Fe, and Zn to the grain.
Organism:
Triticum aestivum
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL10467
1 Sample
Download data: TXT
Series
Accession:
GSE22048
ID:
200022048
9.

Statistical learning quantifies transposable element-mediated cis-regulation

(Submitter supplied) KLF4 and ZNF611 ChIP-seq when overexpressed in primed or in naive respectively
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
9 Samples
Download data: BED
Series
Accession:
GSE208403
ID:
200208403
10.

Primate-specific Transcription Factors & Cis-Regulatory Elements Regulate Human Developmental Evolution.

(Submitter supplied) The human genome is composed of 4.5 million transposable elements (TE). The requirement for a TE to propagate through the genome during evolution is to be expressed to be retro-transpose into germ cells or pre-implantation embryo. Thus, many evolutionarily young TEs still contain DNA binding sites for pluripotency factors and are transiently expressed in the pre-implantation embryo. We observed that these and many other primate-restricted transposable elements have alternative binding sites for cell-type-specific transcription factors that allow them to be transcribed during human gastrulation. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
14 Samples
Download data: BED, TXT
Series
Accession:
GSE181120
ID:
200181120
11.

Transcriptome analyses of three Zymoseptoria tritici isolates during infection of Triticum aestivum

(Submitter supplied) We collected infected wheat leaf material at up to nine time points per Z. tritici isolate and conducted confocal microscopy analyses to select samples for RNA extraction and transcriptome sequencing based on the morphological infection stage. Thereby, we generated stage-specific RNA-seq datasets corresponding to the four core infection stages allowing us to compare the isolate-specific expression profiles at the same developmental stage of infection. more...
Organism:
Triticum aestivum; Zymoseptoria tritici
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24181
24 Samples
Download data: TXT
Series
Accession:
GSE106136
ID:
200106136
12.

Tranposable elements modulate human mRNAs and lncRNAs via specific RNA-protein interactions.

(Submitter supplied) Transposable elements (TEs) have significantly influenced the evolution of transcriptional regulatory networks in the human genome. Post-transcriptional regulation of human genes by TE-derived sequences has been observed in specific contexts, but has yet to be systematically and comprehensively investigated. Here, studied a collection of CLIP-Seq (CrossLinked ImmunoPrecipitation) experiments mapping the RNA binding sites for a diverse set of 46 human proteins across 68 experiments to explore the role of TEs in post-transcriptional regulation genome-wide via RNA-protein interactions. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL16791
6 Samples
Download data: DIFF
13.

Co-option of the lineage-specific LAVA retrotransposon in the gibbon genome

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Hylobates lar; Hylobates muelleri; Nomascus gabriellae; Nomascus leucogenys; Hylobates pileatus; Hoolock leuconedys; Hylobates moloch; Symphalangus syndactylus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Other
15 related Platforms
60 Samples
Download data: TXT
Series
Accession:
GSE136968
ID:
200136968
14.

Co-option of the lineage-specific LAVA retrotransposon in the gibbon genome [WGS]

(Submitter supplied) Co-option of transposable elements (TEs) to become part of existing or new enhancers is an important mechanism for evolution of gene regulation. However, contributions of lineage-specific TE insertions to recent regulatory adaptations remain poorly understood. Gibbons present a suitable model to study these contributions as they have evolved a lineage-specific TE called LAVA (LINE-AluSz-VNTR-AluLIKE), which is still active in the gibbon genome. more...
Organism:
Hylobates lar; Hylobates pileatus; Nomascus leucogenys; Hylobates muelleri; Hylobates moloch; Hoolock leuconedys; Symphalangus syndactylus; Nomascus gabriellae
Type:
Other
14 related Platforms
23 Samples
Download data: XLSX
Series
Accession:
GSE136966
ID:
200136966
15.

Co-option of the lineage-specific LAVA retrotransposon in the gibbon genome[RNA-Seq]

(Submitter supplied) Co-option of transposable elements (TEs) to become part of existing or new enhancers is an important mechanism for evolution of gene regulation. However, contributions of lineage-specific TE insertions to recent regulatory adaptations remain poorly understood. Gibbons present a suitable model to study these contributions as they have evolved a lineage-specific TE called LAVA (LINE-AluSz-VNTR-AluLIKE), which is still active in the gibbon genome. more...
Organism:
Nomascus leucogenys
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL25055 GPL24727
9 Samples
Download data: TXT
Series
Accession:
GSE136965
ID:
200136965
16.

Co-option of the lineage-specific LAVA retrotransposon in the gibbon genome [PU.1 ChIP-seq]

(Submitter supplied) Co-option of transposable elements (TEs) to become part of existing or new enhancers is an important mechanism for evolution of gene regulation. However, contributions of lineage-specific TE insertions to recent regulatory adaptations remain poorly understood. Gibbons present a suitable model to study these contributions as they have evolved a lineage-specific TE called LAVA (LINE-AluSz-VNTR-AluLIKE), which is still active in the gibbon genome. more...
Organism:
Nomascus leucogenys
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL27430
4 Samples
Download data: BEDGRAPH, TXT, XLSX
Series
Accession:
GSE136964
ID:
200136964
17.

Co-option of the lineage-specific LAVA retrotransposon in the gibbon genome [Histone ChIP-seq]

(Submitter supplied) Co-option of transposable elements (TEs) to become part of existing or new enhancers is an important mechanism for evolution of gene regulation. However, contributions of lineage-specific TE insertions to recent regulatory adaptations remain poorly understood. Gibbons present a suitable model to study these contributions as they have evolved a lineage-specific TE called LAVA (LINE-AluSz-VNTR-AluLIKE), which is still active in the gibbon genome. more...
Organism:
Nomascus leucogenys
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL25055 GPL24727
24 Samples
Download data: BEDGRAPH
Series
Accession:
GSE136963
ID:
200136963
18.

Hominid-specific transposable elements and KRAB-ZFPs facilitate human embryonic genome activation and transcription in naïve hESCs [ATAC-seq]

(Submitter supplied) Transposable elements (TEs) are key to the evolutionary turnover of regulatory sequences. How they can play such an essential role in spite of their genotoxic potential is unknown. Here, we demonstrate that KRABcontaining zinc finger proteins control the timely and pleiotropic engagement of TE-derived cis-regulators of transcription. We first observed that evolutionary recent TEs of the SVA, HERVK and HERVH subgroups are major contributors to chromatin opening during human embryonic genome activation and act as KLF-stimulated enhancers in naïve embryonic stem cells. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
10 Samples
Download data: BED
Series
Accession:
GSE130418
ID:
200130418
19.

Hominid-specific transposable elements and KRAB-ZFPs facilitate human embryonic genome activation and transcription in naïve hESCs [ChIP-seq]

(Submitter supplied) Transposable elements (TEs) are key to the evolutionary turnover of regulatory sequences. How they can play such an essential role in spite of their genotoxic potential is unknown. Here, we demonstrate that KRABcontaining zinc finger proteins control the timely and pleiotropic engagement of TE-derived cis-regulators of transcription. We first observed that evolutionary recent TEs of the SVA, HERVK and HERVH subgroups are major contributors to chromatin opening during human embryonic genome activation and act as KLF-stimulated enhancers in naïve embryonic stem cells. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
35 Samples
Download data: BED
Series
Accession:
GSE130417
ID:
200130417
20.

Hominid-specific transposable elements and KRAB-ZFPs facilitate human embryonic genome activation and transcription in naïve hESCs [RNA-seq]

(Submitter supplied) Transposable elements (TEs) are key to the evolutionary turnover of regulatory sequences. How they can play such an essential role in spite of their genotoxic potential is unknown. Here, we demonstrate that KRABcontaining zinc finger proteins control the timely and pleiotropic engagement of TE-derived cis-regulators of transcription. We first observed that evolutionary recent TEs of the SVA, HERVK and HERVH subgroups are major contributors to chromatin opening during human embryonic genome activation and act as KLF-stimulated enhancers in naïve embryonic stem cells. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL16791
34 Samples
Download data: TAB
Series
Accession:
GSE130416
ID:
200130416
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=2|qty=14|blobid=MCID_673967c7c6023e543c2ad6a1|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center