U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Combinatorial Transcriptional Control in Blood Stem/Progenitor Cells: Genome-wide Analysis of 10 major Transcriptional Regulators

(Submitter supplied) Combinatorial transcription factor (TF) interactions control cellular phenotypes and therefore underpin stem cell formation, maintenance and differentiation. Here we report the genome-wide binding patterns and combinatorial interactions for 10 key regulators of blood stem/progenitor cells (Scl/Tal1, Lyl1, Lmo2, Gata2, Runx1, Meis1, Pu.1, Erg, Fli-1, Gfi1b) thus providing the most comprehensive TF dataset for any adult stem/progenitor cell type to date. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9250
11 Samples
Download data: BEDGRAPH, TXT
Series
Accession:
GSE22178
ID:
200022178
2.

Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis

(Submitter supplied) Combinatorial actions of relatively few transcription factors control hematopoietic differentiation. To investigate this process in erythro-megakaryopoiesis, we correlated the genome-wide chromatin occupancy signatures of four master hematopoietic transcription factors (GATA1, GATA2, TAL1, and FLI1) and three diagnostic histone modification marks with the gene expression changes that occur during development of primary cultured megakaryocytes (MEG) and primary erythroblasts (ERY) from murine fetal liver hematopoietic stem/progenitor cells. more...
Organism:
Mus musculus
Type:
Other
Platforms:
GPL9250 GPL13112 GPL6246
42 Samples
Download data: BEDGRAPH, BIGWIG, BROADPEAK, CEL, TXT
Series
Accession:
GSE51337
ID:
200051337
3.

Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis

(Submitter supplied) Combinatorial actions of relatively few transcription factors control hematopoietic differentiation. To investigate this process in erythro-megakaryopoiesis, we correlated the genome-wide chromatin occupancy signatures of four master hematopoietic transcription factors (GATA1, GATA2, SCL/TAL1 and FLI1) and three diagnostic histone modification marks with the gene expression changes that occur during development of primary megakaryocytes (MEG) and erythroblasts (ERY) from murine fetal liver hematopoietic stem/progenitor cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6246
12 Samples
Download data: CEL
Series
Accession:
GSE49664
ID:
200049664
4.

Genome-wide Analysis of Transcriptional Regulators in Human Blood Stem/Progenitor Cells reveals a densely interconnected network of coding and non-coding genes.

(Submitter supplied) Combinatorial transcription factor (TF) interactions regulate hematopoietic stem cell formation, maintenance and differentiation, and are increasingly recognised as drivers of stem cell signatures in cancer. However, genome-wide combinatorial binding patterns for key regulators do not exist in primary human hematopoietic stem/progenitor cells (HSPCs) and have constrained analysis of the global architecture of the molecular circuits controlling these cells. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL11154
10 Samples
Download data: BED
Series
Accession:
GSE45144
ID:
200045144
5.

Genome-wide Transcription Factor binding maps reveal cell-specific changes in the regulatory architecture of human HSPC

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Other
Platform:
GPL24676
156 Samples
Download data: BW
Series
Accession:
GSE231486
ID:
200231486
6.

Genome-wide Transcription Factor binding maps reveal cell-specific changes in the regulatory architecture of human HSPC [HiC]

(Submitter supplied) Hematopoietic stem and progenitor cells (HSPCs) rely on a complex interplay of transcription factors (TFs) to regulate their differentiation into mature blood cells. A heptad of TFs - FLI1, ERG, GATA2, RUNX1, TAL1, LYL1, LMO2 - has been shown to bind to regulatory elements in bulk CD34+ HSPCs. However, whether specific combinations of these TFs have distinct roles in regulating hematopoietic differentiation remained unknown. more...
Organism:
Homo sapiens
Type:
Other
Platform:
GPL24676
8 Samples
Download data: BED, MATRIX
Series
Accession:
GSE231485
ID:
200231485
7.

Genome-wide Transcription Factor binding maps reveal cell-specific changes in the regulatory architecture of human HSPC [HiChIP]

(Submitter supplied) Hematopoietic stem and progenitor cells (HSPCs) rely on a complex interplay of transcription factors (TFs) to regulate their differentiation into mature blood cells. A heptad of TFs - FLI1, ERG, GATA2, RUNX1, TAL1, LYL1, LMO2 - has been shown to bind to regulatory elements in bulk CD34+ HSPCs. However, whether specific combinations of these TFs have distinct roles in regulating hematopoietic differentiation remained unknown. more...
Organism:
Homo sapiens
Type:
Other
Platform:
GPL24676
8 Samples
Download data: TXT, XLSX
Series
Accession:
GSE231426
ID:
200231426
8.

Genome-wide Transcription Factor binding maps reveal cell-specific changes in the regulatory architecture of human HSPC [ChIP-seq]

(Submitter supplied) Hematopoietic stem and progenitor cells (HSPCs) rely on a complex interplay of transcription factors (TFs) to regulate their differentiation into mature blood cells. A heptad of TFs - FLI1, ERG, GATA2, RUNX1, TAL1, LYL1, LMO2 - has been shown to bind to regulatory elements in bulk CD34+ HSPCs. However, whether specific combinations of these TFs have distinct roles in regulating hematopoietic differentiation remained unknown. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL24676
8 Samples
Download data: BW
Series
Accession:
GSE231425
ID:
200231425
9.

Genome-wide Transcription Factor binding maps reveal cell-specific changes in the regulatory architecture of human HSPC [ChIPmentation]

(Submitter supplied) Hematopoietic stem and progenitor cells (HSPCs) rely on a complex interplay of transcription factors (TFs) to regulate their differentiation into mature blood cells. A heptad of TFs - FLI1, ERG, GATA2, RUNX1, TAL1, LYL1, LMO2 - has been shown to bind to regulatory elements in bulk CD34+ HSPCs. However, whether specific combinations of these TFs have distinct roles in regulating hematopoietic differentiation remained unknown. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL24676
132 Samples
Download data: BW, NARROWPEAK
Series
Accession:
GSE231422
ID:
200231422
10.

Redundant mechanisms driven independently by RUNX1 and GATA2 for hematopoietic development [zebrafish bulk RNA-seq2]

(Submitter supplied) Here we used RNAsequencing to characterize the transcriptional profile of the kidney of runx1 knock out zebrafish adult compared to wild type.
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18413
5 Samples
Download data: TXT
Series
Accession:
GSE169689
ID:
200169689
11.

Redundant mechanisms driven independently by RUNX1 and GATA2 for hematopoietic development

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus; Danio rerio
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL17021 GPL25922 GPL18413
26 Samples
Download data: MTX, TSV, TXT
Series
Accession:
GSE158101
ID:
200158101
12.

Redundant mechanisms driven independently by RUNX1 and GATA2 for hematopoietic development

(Submitter supplied) Here we used RNA sequencing to characterize the transcriptional profile of the total RNA from c-Kit+ cells of Runx1 KO and control mice.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
6 Samples
Download data: TXT
Series
Accession:
GSE158100
ID:
200158100
13.

Redundant mechanisms driven independently by RUNX1 and GATA2 for hematopoietic development

(Submitter supplied) We used single cell-RNA sequencing to investigate the expression and the heterogeneity of wild type and runx1-mutant cd41-GFPLow cd41GFP hematopoietic stem and progenitor cells at embryonic (2.5 days post fertilization, dpf) and larval stages (6, 10 16 dpf).
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL25922
9 Samples
Download data: MTX, TSV
Series
Accession:
GSE158099
ID:
200158099
14.

Redundant mechanisms driven independently by RUNX1 and GATA2 for hematopoietic development

(Submitter supplied) Here we used RNA sequencing to characterize the transcriptional profile of the kidney of runx1 knock out zebrafish adult compared to wild type.
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18413
6 Samples
Download data: TXT
Series
Accession:
GSE158098
ID:
200158098
15.

The Poly(C) binding protein Pcbp2, and its retrotransposed derivative Pcbp1, are independently essential to mouse development

(Submitter supplied) RNA-binding proteins participate in a complex array of post-transcriptional controls essential to cell-type specification and somatic development. Despite their detailed biochemical characterizations, the degree to which each RNA-binding protein impacts on mammalian embryonic development remains incompletely defined and the level of functional redundancy among subsets of these proteins remains open to question. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
7 Samples
Download data: TXT
Series
Accession:
GSE72491
ID:
200072491
16.

Runx1+ vascular smooth muscle cells are essential for hematopoietic stem and progenitor cell development in vivo

(Submitter supplied) We sequenced 4 sorted cell populations: ECs, HECs, Runx1+ IAHCs and Runx1- IAHCs.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
4 Samples
Download data: XLSX
Series
Accession:
GSE229850
ID:
200229850
17.

Runx1+ vascular smooth muscle cells are essential for hematopoietic stem and progenitor cell development in vivo

(Submitter supplied) Hematopoietic stem cells (HSCs) produce all essential cellular components of the blood. Stromal cell lines supporting HSCs follow a vascular smooth muscle cell (vSMC) differentiation pathway, suggesting that some hematopoiesis-supporting cells originate from vSMC precursors. These pericyte-like precursors were recently identified in the aorta-gonad-mesonephros (AGM) region; however, their role in in vivo hematopoietic development remains unknown. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24247
2 Samples
Download data: MTX, TSV
Series
Accession:
GSE178981
ID:
200178981
18.

HoxB4 in hematopoietic stem cells

(Submitter supplied) Ectopic expression of homeodomain transcription factor HoxB4 in mouse ES cells enhances in vitro development of hematopoietic stem cells (HSCs).
Organism:
Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by array
Platforms:
GPL6246 GPL4128 GPL4129
8 Samples
Download data: CEL, TXT
Series
Accession:
GSE26653
ID:
200026653
19.

Runx1 Circular Chromosome Conformation Capture Sequencing in Mouse Hematopoietic Progenitor Cells

(Submitter supplied) We have performed circular chromosome conformation capture sequencing (4C-seq) with six baits located at the Runx1 locus in the mouse hematopoietic progenitor cell line HPC-7. 4C baits were designed to the P1 and P2 promoters and to the previously characterised +24 hematopoietic enhancer (P1, P2 and 24), with secondary baits located at nearby cohesin/CTCF (cc) binding sites (P1cc, 24cc, P2cc).
Organism:
Mus musculus
Type:
Other
Platform:
GPL13112
18 Samples
Download data: BED, BEDGRAPH
Series
Accession:
GSE86994
ID:
200086994
20.

RUNX1B expression distinguishes megakaryocytic and erythroid lineage fate in adult hematopoiesis

(Submitter supplied) The Core Binding Factor (CBF) protein RUNX1 is a master regulator of definitive hematopoiesis, crucial for hematopoietic stem cell (HSC) emergence during ontogeny, which also plays vital roles in adult mice, in regulating the correct specification of numerous blood lineages. Akin to the other mammalian Runx genes, Runx1 has two promoters P1 (distal) and P2 (proximal) which generate distinct protein isoforms. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
12 Samples
Download data: TXT
Series
Accession:
GSE68958
ID:
200068958
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=6|qty=4|blobid=MCID_6731ee60f73b361c515e2345|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center