U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Injury-activated endocardium plays structural and signalling roles in zebrafish heart regeneration

(Submitter supplied) The zebrafish heart remarkably regenerates after a severe ventricular damage followed by inflammation, fibrotic tissue deposition and removal concomitant with cardiac muscle replacement. We have investigated the role of the endocardium in this regeneration process. 3D-whole mount imaging in injured hearts revealed that GFP-labelled endocardial cells in ET33mi-60A transgenic fish become rapidly activated and highly proliferative at 3 days post cryoinjury (dpci). more...
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL15583
6 Samples
Download data: CSV
Series
Accession:
GSE68650
ID:
200068650
2.

Endocardial Notch Signaling Promotes Cardiomyocyte Proliferation in the Regenerating Zebrafish Heart through Wnt Pathway Antagonism

(Submitter supplied) The goal of this study is to understand the molecular mechanisms underlying this Notch-induced muscle cell proliferation defect, we sequenced the transcriptome of control ventricles and Notch-suppressed ventricle at 5 days post-injury, when cardiomyocyte proliferation is normally robust.
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL14875
6 Samples
Download data: TXT
Series
Accession:
GSE107228
ID:
200107228
3.

­runx1 controls zebrafish heart regeneration by promoting scar deposition as well as inhibiting myocardial proliferation and survival

(Submitter supplied) Runx1 is a transcription factor that plays a key role in determining the proliferative and differential state of multiple cell types, during both development and adulthood. Here, we report how runx1 is specifically upregulated at the injury site during zebrafish heart regeneration, but unexpectedly, absence of runx1 results in enhanced regeneration. Using single cell sequencing, we found that the wild-type injury site consists of Runx1-positive endocardial cells and thrombocytes that express smooth muscle and collagen genes without differentiating into myofibroblasts. more...
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18413
3 Samples
Download data: H5
Series
Accession:
GSE138181
ID:
200138181
4.

Genome–wide transcriptional profiling with spatial resolution identifies Bone Morphogenetic Protein signaling as essential regulator of zebrafish cardiomyocyte regeneration.

(Submitter supplied) In contrast to mammals, zebrafish regenerate heart injuries via proliferation of cardiomyocytes located at the wound border. Here, we show that tomo-seq can be used to identify whole-genome transcriptional profiles of the injury zone, the border zone and the healthy myocardium. Interestingly, the border zone is characterized by the re-expression of embryonic cardiac genes that are also activated after myocardial infarction in mouse and human, including targets of Bone Morphogenetic Protein (BMP) signaling. more...
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20828
2 Samples
Download data: CSV
Series
Accession:
GSE74652
ID:
200074652
5.

Endocardial identity is established during early somitogenesis by Bmp signalling acting upstream of npas4l and etv2

(Submitter supplied) The endocardium plays important roles in the development and function of the vertebrate heart; however, few molecular markers of this tissue have been identified and little is known about what regulates its differentiation. Here, we describe the Gt(SAGFF27C); Tg(4xUAS:egfp) line as a marker of endocardial development in zebrafish. Transcriptomic comparison between endocardium and pan-endothelium confirms molecular distinction between these populations and time-course analysis suggests differentiation as early as eight somites. more...
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20828
6 Samples
Download data: CSV
Series
Accession:
GSE201611
ID:
200201611
6.

Next Generation Sequencing Facilitates Quantitative Analysis of Wild Type and Ccn2a-/- cardiac ventricular Transcriptomes

(Submitter supplied) Purpose: The goal of this study is to compare transcriptome level between 4 dpci wild-type and ccn2a-/- zebrafish cardiac ventricle. Methods: 4-days-post cryoinjured cardiac ventricular mRNA profiles of wild-type (WT) and cellular communication network factor 2a mutant (ccn2a−/−) zebrafish were generated by deep sequencing, in duplicate. Results: 7 genes showed differential expression between the WT and ccn2a−/− heart, with a fold change ≥1.5 and p value <0.05. more...
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20828
4 Samples
Download data: TXT
Series
Accession:
GSE164491
ID:
200164491
7.

Cardiac-tbx20 overexpression enhances heart regeneration by promoting cardiomyocytes dedifferentiation and endocardial activation

(Submitter supplied) The goal of this study is to understand the function of cardiac tbx20 during heart regeneration. By high-throughput sequencing, molecular variations of tbx20-cardiac specific inducing heart in response to heart injury compared with control hearts were demonstrated. We collected the injured heart apex tissue at 7 days post injury and sequenced the transcriptome.
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL14875
6 Samples
Download data: TXT
Series
Accession:
GSE144831
ID:
200144831
8.

Id2a knockdown in zebrafish retina

(Submitter supplied) During vertebrate retinogenesis, the precise balance between retinoblast proliferation and differentiation is spatially and temporally regulated through a number of intrinsic factors and extrinsic signaling pathways. Moreover, there are complex gene regulatory network interactions between these intrinsic factors and extrinsic pathways, which ultimately function to determine when retinoblasts exit the cell cycle and terminally differentiate. more...
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL14875
4 Samples
Download data: TXT
Series
Accession:
GSE38786
ID:
200038786
9.

Identification of targets of Vegfc signaling during cardiac regeneration in zebrafish

(Submitter supplied) Purpose:to identify with transcriptomic analysis, gene targets of Vegfc signaling during cardiac regeneration in zebrafish. Results: We were able to identify several differential expressed genes, many of which encode for immune related genes, as well as ECM components.
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20828
4 Samples
Download data: TXT
Series
Accession:
GSE168175
ID:
200168175
10.

Comparison of the expression profile of GFP-positive cells from Tg(-6.8wt1a:EGFP) with the rest of the cells in adult zebrafish cardiac ventricles

(Submitter supplied) wt1a:GFP labels a population of subepicardial cells in the uninjured ventricle. Here we compare the expression profile of wt1a:GFP-positive cells to the rest of the cells of the ventricle.
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18413
8 Samples
Download data: XLSX
Series
Accession:
GSE101204
ID:
200101204
11.

Comparison of the expression profiles of kdrl:mCherry-positive cells in injured versus uninjured zebrafish cardiac ventricle and analysis of the expression prolife of postnb:citrin-positive cells upon injury compared to the rest of cardiac cells.

(Submitter supplied) Contrary to mammals, zebrafish regenerate their heart upon cryoinjury of the cardiac ventricular apex. Regeneration is preceed by a fibrotic response. To understand the contribution of different cell sources to zebrafish cardiac fibrosis we performed an RNASeq including endocardial kdrl:mCherry cells from an uninjured heart, and activated endocardial kdrl:mCherry cells, postnb:citrine fibroblasts and the rest of the cells at 7 days post injury.
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18413
16 Samples
Download data: XLSX
Series
Accession:
GSE101200
ID:
200101200
12.

postnb lineage traced cells at 7 and 60 days post cryoinjury (dpi) during adult zebrafish cardiac ventricle regeneration

(Submitter supplied) Contrary to mammals, zebrafish regenerate their heart upon cryoinjury of the ventricular apex. Regeneration is preceeded by a transient fibrotic response. Here we compare the expression profile of fibroblast-like cells at 7 different time points of fibrosis resolution. Using a postnb:CreERT2; ubb:loxP-GFP-loxP-mCherrycz1701 double transgenic line, we permanently label cells that expressed postnb at 3 and 4 days post injury (dpi) with mCherry by administration of 4-OHT. more...
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18413
7 Samples
Download data: XLS
Series
Accession:
GSE101199
ID:
200101199
13.

siRNA knockdown of neonatal rat cardiac myocytes and fibroblasts

(Submitter supplied) Primary neonatal rat cardiac myocytes or fibroblasts were isolated and subjected to siRNA mediated Yap knockdown
Organism:
Rattus norvegicus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24782
12 Samples
Download data: XLSX
Series
Accession:
GSE112464
ID:
200112464
14.

RNAseq of regenerating yap mutant zebrafish hearts

(Submitter supplied) A Yap knockout zebrafish line was used to observe how loss of Yap affects cardiac regeneration.
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24776
12 Samples
Download data: XLSX
Series
Accession:
GSE112452
ID:
200112452
15.

Single-cell analysis uncovers that metabolic reprogramming is essential for cardiomyocyte proliferation in the regenerating heart.

(Submitter supplied) While the heart regenerates poorly in mammals, efficient heart regeneration occurs in certain amphibian and fish species. Zebrafish has been used extensively to study heart regeneration, resulting in a model in which preexisting cardiomyocytes dedifferentiate and reinitiate proliferation to replace the lost myocardium. However, there is limited knowledge about the cellular processes that occur in this rare population of proliferating cardiomyocytes during heart regeneration. more...
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20828
4 Samples
Download data: CSV, TSV
Series
Accession:
GSE139218
ID:
200139218
16.

Notch1 Signaling Regulates the Aggressiveness of Differentiated Thyroid Cancer and Inhibits SERPINE1 Expression

(Submitter supplied) To identify novel down-stream effectors of Notch1 signaling, we have employed cDNA microarray expression profiling as a discovery platform. Human follicualr thyroid carcinoma cell line FTC236 was engineered with tet-on inducible system to establish a stable cell line. The stable cell line FTC236-Notch1 showed robust inducibility with doxycycline, which triggers the expression of Notch1 intracellular domain (NICD). more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL13607
6 Samples
Download data: TXT
Series
Accession:
GSE70627
ID:
200070627
17.

Prrx1b restricts fibrosis and promotes Nrg1-dependent cardiomyocyte proliferation during zebrafish heart regeneration

(Submitter supplied) Fibroblasts are activated to repair the heart following injury. Fibroblast activation in the mammalian heart leads to a permanent fibrotic scar that impairs cardiac function. In other organisms, such as zebrafish, cardiac injury is followed by transient fibrosis and scar-free regeneration. The mechanisms that drive scarring versus scar-free regeneration are not well understood. Here, we show that the homeobox-containing transcription factor Prrx1b is required for scar-free regeneration of the zebrafish heart as the loss of Prrx1b results in excessive fibrosis and impaired cardiomyocyte proliferation. more...
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20828
4 Samples
Download data: CSV, TSV
Series
Accession:
GSE153170
ID:
200153170
18.

Cardiomyocyte heterogeneity in zebrafish development and regeneration

(Submitter supplied) Contrary to adult mammals, zebrafish are able to regenerate their heart after cardiac injury. This regenerative response relies, in part, on the endogenous ability of cardiomyocytes (CMs) to dedifferentiate and proliferate to replenish the lost muscle. However, CM heterogeneity and population dynamics during development and regeneration remain poorly understood. Through comparative transcriptomic analyses of the developing and adult zebrafish heart, we identified tnnc2 and tnni4b.3 expression as markers for CMs at early and late developmental stages, respectively. more...
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20828
4 Samples
Download data: TXT
Series
Accession:
GSE157662
ID:
200157662
19.

Transcriptome comparison of wild-type and tnnt2a MO zebrafish hearts

(Submitter supplied) We performed RNA-seq analyses to characterize transcriptomic changes in non-beating tnnt2a morphant compared to wild-type hearts.
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20828
6 Samples
Download data: XLSX
Series
Accession:
GSE151398
ID:
200151398
20.

Gene expression arrays of cardiomyocyte ribosome-associated RNAs during zebrafish heart regeneration

(Submitter supplied) A transgenic line cmlc2:TRAP was made to express EGFP-fused ribosomal protein L10a (EGFP-L10a) in zebrafish cardiomyocytes. Then ribosome-associated RNAs were immuoprecipitated from uninjured and injured adult cmlc2:TRAP fish to determine the differential expression changes during zebrafish heart regeneration.
Organism:
Danio rerio
Type:
Expression profiling by array
Platform:
GPL17210
9 Samples
Download data: PAIR
Series
Accession:
GSE48914
ID:
200048914
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=2|qty=4|blobid=MCID_6723a9f36cd4725ffc765220|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Support Center