U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

EZH1 as a key epigenetic barrier to definitive haematopoiesis during embryonic development

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens; Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
4 related Platforms
58 Samples
Download data: BED, TXT, WIG
Series
Accession:
GSE89418
ID:
200089418
2.

ChIP-seq analysis of EZH1, H3K4me3 and H3K27me3 in 5F cells

(Submitter supplied) Blood develops in distinct stages. Haematopoietic progenitors in the embryo manifest restricted differentiation potential relative to definitive haematopoietic stem cells in adult bone marrow, which support lifelong multilineage haematopoiesis. To identify regulators of embryonic haematopoiesis, we screened chromatin modifiers and identified the Polycomb group protein EZH1 as a barrier to multilineage potential from pluripotent stem cells (PSCs). more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
15 Samples
Download data: BED, WIG
Series
Accession:
GSE89417
ID:
200089417
3.

ATAC-seq analysis in 5F cells and AGM cells with EZH1 depletion

(Submitter supplied) Blood develops in distinct stages. Haematopoietic progenitors in the embryo manifest restricted differentiation potential relative to definitive haematopoietic stem cells in adult bone marrow, which support lifelong multilineage haematopoiesis. To identify regulators of embryonic haematopoiesis, we screened chromatin modifiers and identified the Polycomb group protein EZH1 as a barrier to multilineage potential from pluripotent stem cells (PSCs). more...
Organism:
Homo sapiens; Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL19057 GPL18573
7 Samples
Download data: BED, WIG
Series
Accession:
GSE89416
ID:
200089416
4.

RNA-seq analysis of EZH1 knockdown in 5F cells, or EZH1 heterozygous and homozygous knockout YS and AGM cells

(Submitter supplied) Blood develops in distinct stages. Haematopoietic progenitors in the embryo manifest restricted differentiation potential relative to definitive haematopoietic stem cells in adult bone marrow, which support lifelong multilineage haematopoiesis. To identify regulators of embryonic haematopoiesis, we screened chromatin modifiers and identified the Polycomb group protein EZH1 as a barrier to multilineage potential from pluripotent stem cells (PSCs). more...
Organism:
Mus musculus; Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL17021 GPL16791
36 Samples
Download data: TXT
Series
Accession:
GSE89415
ID:
200089415
5.

Multipotent progenitors and hematopoietic stem cells arise independently from hemogenic endothelium in the mouse embryo

(Submitter supplied) During embryogenesis, waves of hematopoietic progenitors develop from hemogenic endothelium (HE) prior to the emergence of self-renewing hematopoietic stem cells (HSC). Although previous studies have shown that yolk sac-derived erythromyeloid progenitors and HSC emerge from distinct populations of HE, it remains unknown whether the earliest lymphoid-competent progenitors, multipotent progenitors, and HSC originate from common HE. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
2 Samples
Download data: MTX, RDS, TSV
Series
Accession:
GSE171457
ID:
200171457
6.

Mapping Human Hematopoietic Stem Cells From Hemogenic Endothelium To Birth

(Submitter supplied) Human hematopoietic stem cell (HSC) ontogeny is poorly defined due to the inability to identify HSCs as they emerge and mature in different hematopoietic sites. We created a single-cell transcriptome map of human hematopoietic tissues from 1st trimester to birth and found that HSC signature RUNX1+HOXA9+MLLT3+MECOM+HLF+SPINK2+ distinguishes HSCs from progenitors throughout gestation. In addition to the AGM (aorta-gonad-mesonephros) region, nascent HSCs populated the placenta and yolk sac before colonizing the liver at 6 weeks. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24676
28 Samples
Download data: CSV, PNG, TAR
Series
Accession:
GSE162950
ID:
200162950
7.

Reprogramming of Endothelium Into Hematopoietic Progenitors by Defined Factors and Vascular Induction

(Submitter supplied) Generation of abundant engraftable hematopoietic cells from autologous tissues promises new therapies for hematologic diseases. Differentiation of pluripotent stem cells into hematopoietic cells results in emergence of cells that have poor engraftment potential. To circumvent this hurdle, we have devised a vascular niche model to phenocopy the developmental microenvironment of hemogenic cells thereby enabling direct transcriptional reprogramming of human endothelial cells (ECs) into hematopoietic cells. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11154
16 Samples
Download data: TXT
8.

Differential Ezh1/2 regulation of hemogenic fate and hematopoietic stem and progenitor cell formation from arterial endothelium

(Submitter supplied) Across species, hematopoietic stem and progenitor cells (HSPCs) arise during embryogenesis from a specialized arterial population, termed hemogenic endothelium. Here, we describe a mechanistic role for the epigenetic regulator, Enhancer of zeste homolog-1 (Ezh1) in vertebrate HSPC production via regulation of hemogenic commitment. Loss of ezh1 in zebrafish embryos favored acquisition of hemogenic (gata2b) and HSPC (runx1) fate at the expense of the arterial program (ephrinb2a, dll4). more...
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24995
6 Samples
Download data: MTX, RDS, TSV
Series
Accession:
GSE173972
ID:
200173972
9.

Expression data from LSK cells from mice with knock-out of Ezh1 versus LSK control

(Submitter supplied) Ezh1 is a protein member of PRC2. Ezh1 has been described as a functional repressor gene, such as its homologous Ezh2. We are investigating the role of Ezh1 in hematopoietic stem cells, aging, self-renewal and differentiation. We used microarrays to detail the global program of gene expression in LSK cells from mice with knocked-down expression of Ezh1.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL10787
4 Samples
Download data: TXT
Series
Accession:
GSE36288
ID:
200036288
10.

DNA methylation data from mouse hematopoietic progenitors

(Submitter supplied) Genome-wide DNA methylation was studied to determine the methylome map of lymphoid and myeoloid commitment from hematopoietic progenitors We used custom Nimblegen microarrays to determine the genome-wide DNA methylation in FACs purified mouse hematopoietic progeniors
Organism:
Mus musculus
Type:
Methylation profiling by genome tiling array
Platforms:
GPL10680 GPL10683
35 Samples
Download data: XYS
Series
Accession:
GSE23110
ID:
200023110
11.

A comprehensive methylome map of lineage commitment from hematopoietic progenitors

(Submitter supplied) Epigenetic modifications must underlie lineage-specific differentiation since terminally differentiated cells express tissue-specific genes, but their DNA sequence is unchanged. Hematopoiesis provides a well-defined model of progressive differentiation in which to study the role of epigenetic modifications in cell fate decisions. Multi-potent progenitors (MPPs) can differentiate into all blood cell lineages, while downstream progenitors commit to either myeloerythroid or lymphoid lineages. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
26 Samples
Download data: CEL
Series
Accession:
GSE20244
ID:
200020244
12.

Recapitulative hematopoietic development of human pluripotent stem cells in the absence of exogenous cytokines

(Submitter supplied) We tested whether the sustained hematopoietic differentiation of hPSCs can be achieved in defined cell culture conditions without addition of hematopoietic cytokines. Here we show that the endogenous stimuli were sufficient to induce a robust generation of clonogenic hematopoietic progenitors, maturation of blood cells, emergence of the definitive cell lineages, and progenitors that were phenotypically identical to early human embryonic hematopoietic stem cells (HSCs). more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL16791 GPL20795 GPL21290
34 Samples
Download data: TSV
13.

Geminin regulates self-renewal and fate commitment decisions in fetal hematopoietic stem cells.

(Submitter supplied) Conditional deletion of Geminin from the entire hematopoietic compartment using Vav1:iCre mice led to defective hematopoiesis/dyserythropoiesis in E15.5 mouse embryos. The present data set includes data from lineage-negative cells isolated from homogenized livers that were dissected from E15.5.dpc embryos. The two conditions compared were wild-type versus Geminin-KO Lin- cells. The cells were collected from littermates.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6246
6 Samples
Download data: CEL
Series
Accession:
GSE53056
ID:
200053056
14.

Expression data from Bmi1-null c-Kit+Sca-1+Lineage marker- (KSL) hematopoietic stem/progenitor cells

(Submitter supplied) Bmi1 is a component of polycomb repressive complex 1 and its role in the inheritance of the stemness of adult somatic stem cells has been well characterized. Bmi1 maintains the self-renewal capacity of adult stem cells, at least partially, by repressing the Ink4a/Arf locus that encodes a cyclin-dependent kinase inhibitor, p16Ink4a, and a tumor suppressor, p19Arf 14. Deletion of both Ink4a and Arf in Bmi1-deficient mice substantially restored the defective self-renewal capacity of HSCs and neural stem cells.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
7 Samples
Download data: CEL, CHP
Series
Accession:
GSE19796
ID:
200019796
15.

Hematopoietic Stem and Progenitor Cells from Human Pluripotent Stem Cells via Transcription Factor Conversion of Hemogenic Endothelium

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18573
7 Samples
Download data: TXT
Series
Accession:
GSE85112
ID:
200085112
16.

inDrop single cell RNA-seq of hematopoietic cells derived from human pluripotent stem cells

(Submitter supplied) We performed morphogen-directed differentiation of human PSCs into HE followed by combinatorial screening of 26 candidate HSC-specifying TFs for the potential to promote hematopoietic engraftment in irradiated immune deficient murine hosts. We recovered seven TFs (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1, SPI1) that together were sufficient to convert HE into hematopoietic stem and progenitor cells (HSPCs) that engraft primary and secondary murine recipients
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18573
2 Samples
Download data: TXT
Series
Accession:
GSE85111
ID:
200085111
17.

Transcriptome profiling of hematopoietic cells derived from human pluripotent stem cells

(Submitter supplied) We performed morphogen-directed differentiation of human PSCs into HE followed by combinatorial screening of 26 candidate HSC-specifying TFs for the potential to promote hematopoietic engraftment in irradiated immune deficient murine hosts. We recovered seven TFs (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1, SPI1) that together were sufficient to convert HE into hematopoietic stem and progenitor cells (HSPCs) that engraft primary and secondary murine recipients.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18573
5 Samples
Download data: TXT
18.

Single-cell RNA sequencing analysis of transgenic zebrafish embryo/larvae

(Submitter supplied) The purpose of the experiment was to define the heterogeneity of hematopoietic stem and progenitor cells (HSPC) at emergence and initial maturation using scRNA-Seq of enriched blood populations from transgenic fluorescent zebrafish (30 and 52 hpf). Results provide insight into the different HSPC populations in heamtopoietic development.
Organism:
Danio rerio
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21741
6 Samples
Download data: LOOM, MTX, TSV
Series
Accession:
GSE182213
ID:
200182213
19.

Clonal analysis of lineage fate in unperturbed hematopoiesis

(Submitter supplied) The classical tenet of hematopoiesis posits well-accepted lineage trees that arise from progressively restricted oligopotent and unipotent progenitor populations. However, because fate in hematopoiesis has mostly been studied in the context of transplantation, it is unclear whether these lineage branches and such proposed oligopotent progenitors exist in an unperturbed hematopoietic system. Here, we utilize endogenous transposon tagging to trace the fate of thousands of progenitors and stem cells over time to re-evaluate these dogmas. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
5 Samples
Download data: CSV
Series
Accession:
GSE90742
ID:
200090742
20.

Epigenetic profiles of young vs old Vwf+ HSCs at single cell level

(Submitter supplied) Here we examine the chromatin landscapes of Vwf+ HSCs from young (2 months) vs old (24 months) mouse bone marrow.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19057
1392 Samples
Download data: TXT
Series
Accession:
GSE219096
ID:
200219096
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=3|qty=4|blobid=MCID_672d99abfa580660f37c4b2a|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Support Center