U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Chromatin topology and the timing of enhancer function at the HoxD locus [ChIP-seq]

(Submitter supplied) The HoxD gene cluster is critical for proper limb formation in tetrapods. In the emerging limb buds, different sub-groups of Hoxd genes respond first to a proximal regulatory signal, then to a distal signal that organizes digits. These two regulations are exclusive from one another and emanate separately from two TADs flanking HoxD, both containing a range of appropriate enhancer sequences. The telomeric TAD (T-DOM) contains several enhancers active in presumptive forearm cells and is divided into two sub-TADs separated by a CTCF-rich boundary, which defines two regulatory sub-modules. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL21103
9 Samples
Download data: BEDGRAPH
Series
Accession:
GSE154187
ID:
200154187
2.

Chromatin topology and the timing of enhancer function at the HoxD locus

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Other
Platforms:
GPL21103 GPL17021
72 Samples
Download data: BEDGRAPH, BW
Series
Accession:
GSE154189
ID:
200154189
3.

Chromatin topology and the timing of enhancer function at the HoxD locus [RNA-seq]

(Submitter supplied) The HoxD gene cluster is critical for proper limb formation in tetrapods. In the emerging limb buds, different sub-groups of Hoxd genes respond first to a proximal regulatory signal, then to a distal signal that organizes digits. These two regulations are exclusive from one another and emanate separately from two TADs flanking HoxD, both containing a range of appropriate enhancer sequences. The telomeric TAD (T-DOM) contains several enhancers active in presumptive forearm cells and is divided into two sub-TADs separated by a CTCF-rich boundary, which defines two regulatory sub-modules. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
4 Samples
Download data: BEDGRAPH
Series
Accession:
GSE154188
ID:
200154188
4.

Chromatin topology and the timing of enhancer function at the HoxD locus [4C-seq]

(Submitter supplied) In tetrapods, the HoxD gene cluster is critical for proper limb formation. In the emerging limb buds, different sub-groups of Hoxd genes respond first to a proximal regulatory signal, then to a distal signal that organizes digits. These two regulations emanate from the two TADs flanking HoxD, both containing a range of appropriate enhancer sequences. The telomeric TAD (T-DOM) contains several regulatory elements controlling Hoxd genes, initially in a temporal manner and then in the proximal presumptive forearm. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL17021
59 Samples
Download data: BEDGRAPH, BW, COOL
Series
Accession:
GSE154186
ID:
200154186
5.

A TAD boundary at the HoxD locus segregates opposing limb regulatory landscapes and their target genes

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Other; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL17021 GPL21103
91 Samples
Download data: BEDGRAPH, MATRIX, NARROWPEAK, TAR, TXT
Series
Accession:
GSE101717
ID:
200101717
6.

A TAD boundary at the HoxD locus segregates opposing limb regulatory landscapes and their target genes [Hi-C]

(Submitter supplied) The mammalian HoxD cluster is positioned at the boundary between two topologically associating domains (TADs), each of them matching a distinct, enhancer-rich regulatory landscape. During limb development, the telomeric TAD controls the early phase of Hoxd gene transcription in future forearm cells, whereas the centromeric TAD subsequently regulates transcription of more posterior Hoxd genes in presumptive digit cells. more...
Organism:
Mus musculus
Type:
Other; Third-party reanalysis
Platform:
GPL21103
6 Samples
Download data: MATRIX, TAR, TXT
Series
Accession:
GSE101715
ID:
200101715
7.

A TAD boundary at the HoxD locus segregates opposing limb regulatory landscapes and their target genes [ChIP-Seq]

(Submitter supplied) The mammalian HoxD cluster is positioned at the boundary between two topologically associating domains (TADs), each of them matching a distinct, enhancer-rich regulatory landscape. During limb development, the telomeric TAD controls the early phase of Hoxd gene transcription in future forearm cells, whereas the centromeric TAD subsequently regulates transcription of more posterior Hoxd genes in presumptive digit cells. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL21103 GPL17021
13 Samples
Download data: BEDGRAPH, NARROWPEAK
Series
Accession:
GSE101714
ID:
200101714
8.

A TAD boundary at the HoxD locus segregates opposing limb regulatory landscapes and their target genes [4C-Seq]

(Submitter supplied) The mammalian HoxD cluster is positioned at the boundary between two topologically associating domains (TADs), each of them matching a distinct, enhancer-rich regulatory landscape. During limb development, the telomeric TAD controls the early phase of Hoxd gene transcription in future forearm cells, whereas the centromeric TAD subsequently regulates transcription of more posterior Hoxd genes in presumptive digit cells. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL17021
72 Samples
Download data: BEDGRAPH
Series
Accession:
GSE101713
ID:
200101713
9.

Cumulative in-cis mutagenesis in vivo reveals various functions for CTCF sites at the mouse Hoxd cluster

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Other
Platforms:
GPL17021 GPL21103 GPL19057
86 Samples
Download data: BW, COOL, NARROWPEAK, TXT
Series
Accession:
GSE181387
ID:
200181387
10.

Cumulative in-cis mutagenesis in vivo reveals various functions for CTCF sites at the mouse Hoxd cluster [cHi-C]

(Submitter supplied) We used Capture Hi-C enriching the Hoxd locus and its flanking TADs to study the effects of CRISPR/Cas9-induced CTCF binding sites deletions on chromatin architecture. We analysed wildtype and homozygous mutant E9.5 trunks and E12.5 distal and proximal forelimbs.
Organism:
Mus musculus
Type:
Other
Platforms:
GPL19057 GPL21103
16 Samples
Download data: COOL, TXT
Series
Accession:
GSE181386
ID:
200181386
11.

Cumulative in-cis mutagenesis in vivo reveals various functions for CTCF sites at the mouse Hoxd cluster [RNA-seq]

(Submitter supplied) RNA-seq analysis of the effect of CRISPR/Cas9-induced CTCF binding sites deletions on gene expression. We studied E12.5 distal or proximal forelimbs of wildtype and mutant alleles.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21103
36 Samples
Download data: BW, TXT
Series
Accession:
GSE181385
ID:
200181385
12.

Cumulative in-cis mutagenesis in vivo reveals various functions for CTCF sites at the mouse Hoxd cluster [ChIPmentation]

(Submitter supplied) ChIPmentation-seq analysis of CTCF and RAD21 in wildtype and mutant CTCF binding sites alleles
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19057
30 Samples
Download data: BW, NARROWPEAK
Series
Accession:
GSE181384
ID:
200181384
13.

Cumulative in-cis mutagenesis in vivo reveals various functions for CTCF sites at the mouse Hoxd cluster [ChIP-seq]

(Submitter supplied) ChIP-seq analysis of CTCF wildtype in mouse embryonic posterior trunk and brain samples
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17021
4 Samples
Download data: BW, NARROWPEAK
Series
Accession:
GSE181383
ID:
200181383
14.

Large-scale genomic reorganizations of topological domains (TADs) at the HoxD locus (4C-Seq)

(Submitter supplied) The transcriptional activation of Hoxd genes during mammalian limb development involves dynamic interactions with the two Topologically Associating Domains (TADs) flanking the HoxD cluster. In particular, the activation of the most posterior Hoxd genes in developing digits is controlled by regulatory elements located in the centromeric TAD (C-DOM) through long-range contacts. To assess the structure-function relationships underlying such interactions, we measured compaction levels and TAD discreteness using a combination of chromosome conformation capture (4C-seq) and DNA FISH. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL17021
12 Samples
Download data: BEDGRAPH
Series
Accession:
GSE98861
ID:
200098861
15.

Large-scale genomic reorganizations of topological domains (TADs) at the HoxD locus

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Other
Platform:
GPL17021
15 Samples
Download data: BEDGRAPH, BW
Series
Accession:
GSE98233
ID:
200098233
16.

Analysis of gene expression in the distal forelimbs in 2.4Mb inversion adjacent to the HoxD cluster

(Submitter supplied) E12.5 mouse distal forelimb embryonic transcriptome
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
2 Samples
Download data: BW, TXT
Series
Accession:
GSE98232
ID:
200098232
17.

ChIP-seq analysis of CTCF in distal limbs at mouse E12.5 using anti-CTCF

(Submitter supplied) We performed ChIP-seq for CTCF using the autopod from E12.5 embryo and confirmed the binding pattern previously reported by a ChIP-on-Chip approach using the same embryonic tissue (Soshnikova et al., 2010). Our results show CTCF-mediated gating of long-range contacts at the HoxD locus.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17021
1 Sample
Download data: BW
Series
Accession:
GSE96558
ID:
200096558
18.

E12.5 distal forelimb embryonnic transcriptome

(Submitter supplied) Analysis of gene expression in the distal forelimbs
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
1 Sample
Download data: BW, TXT
Series
Accession:
GSE72285
ID:
200072285
19.

Impact of genome architecture upon the functional activation and repression of Hox regulatory landscapes

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Other
Platforms:
GPL17021 GPL21103
30 Samples
Download data: BEDGRAPH
Series
Accession:
GSE129427
ID:
200129427
20.

Impact of genome architecture upon the functional activation and repression of Hox regulatory landscapes [4C-seq]

(Submitter supplied) The spatial organization of the mammalian genome is complex and relies upon the formation of chromatin domains of various scales. At the level of gene regulation in cis, collections of enhancer sequences define large regulatory landscapes that usually match with the presence of topologically associating domains (TADs). These domains are largely determined by bound CTCF molecules and often contain ranges of enhancers displaying similar or related tissue specificity, suggesting that in some cases such domains may act as coherent regulatory units, with a global on or off state. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL17021
6 Samples
Download data: BEDGRAPH
Series
Accession:
GSE129426
ID:
200129426
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=2|qty=2|blobid=MCID_6677c80c8c5d4760e2e44bd2|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Support Center