U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Changes in genome-wide occupancy of core transcriptional regulators during stress

(Submitter supplied) Organisms respond to heat stress by reprogramming gene expression. Here we show that genome-wide reprogramming involves enhanced assembly of the TFIID and SAGA regulatory pathways at heat induced genes, and disassembly of the TFIID pathway at heat-repressed genes. While TFIID and SAGA are recruited to heat-induced genes, only SAGA appears to be associated with achieving maximal induction. Mot1, an ATP-dependent inhibitor of the TATA binding protein TBP, assembles at heat-induced SAGA-regulated genes, but functions to attenuate rather than promote activation. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platforms:
GPL1220 GPL760
32 Samples
Download data
Series
Accession:
GSE1373
ID:
200001373
2.

Full and partial genome-wide assembly and disassembly of the yeast transcription machinery in response to heat shock

(Submitter supplied) Eukaryotic genes are controlled by sequence-specific DNA-binding proteins, chromatin regulators, general transcription factors, and elongation factors. Here we examine the genome-wide location of representative members of these groups and their redistribution when the Saccharomyces cerevisiae genome is reprogrammed by heat shock. As expected, assembly of active transcription complexes are coupled to eviction of H2A.Z nucleosomes, and disassembly is coupled to the return of nucleosomes. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array; Expression profiling by array
Platforms:
GPL1924 GPL1220 GPL760
111 Samples
Download data
Series
Accession:
GSE2488
ID:
200002488
3.

Dynamics of replication-independent histone turnover in budding yeast

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platforms:
GPL2625 GPL3737 GPL4131
33 Samples
Download data: TXT
Series
Accession:
GSE6680
ID:
200006680
4.

Ratios for Htz1D cells (Agilent array)

(Submitter supplied) Chromatin plays roles in processes governed by different time scales. To assay the dynamic behaviour of chromatin in living cells, we used genomic tiling arrays to measure histone H3 turnover in G1-arrested S. cerevisiae at single-nucleosome resolution over 4% of the genome, and over the entire genome at lower (~265 bp) resolution. We find that nucleosomes at promoters are replaced more rapidly than at coding regions, and that replacement rates over coding regions correlate with polymerase density. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL3737
2 Samples
Download data: TXT
Series
Accession:
GSE6670
ID:
200006670
5.

H3 occupancy

(Submitter supplied) Chromatin plays roles in processes governed by different time scales. To assay the dynamic behaviour of chromatin in living cells, we used genomic tiling arrays to measure histone H3 turnover in G1-arrested S. cerevisiae at single-nucleosome resolution over 4% of the genome, and over the entire genome at lower (~265 bp) resolution. We find that nucleosomes at promoters are replaced more rapidly than at coding regions, and that replacement rates over coding regions correlate with polymerase density. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL4131
2 Samples
Download data: TXT
Series
Accession:
GSE6669
ID:
200006669
6.

Nucleosome occupancy

(Submitter supplied) Chromatin plays roles in processes governed by different time scales. To assay the dynamic behaviour of chromatin in living cells, we used genomic tiling arrays to measure histone H3 turnover in G1-arrested S. cerevisiae at single-nucleosome resolution over 4% of the genome, and over the entire genome at lower (~265 bp) resolution. We find that nucleosomes at promoters are replaced more rapidly than at coding regions, and that replacement rates over coding regions correlate with polymerase density. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL4131
2 Samples
Download data: TXT
Series
Accession:
GSE6668
ID:
200006668
7.

PolII occupancy

(Submitter supplied) Chromatin plays roles in processes governed by different time scales. To assay the dynamic behaviour of chromatin in living cells, we used genomic tiling arrays to measure histone H3 turnover in G1-arrested S. cerevisiae at single-nucleosome resolution over 4% of the genome, and over the entire genome at lower (~265 bp) resolution. We find that nucleosomes at promoters are replaced more rapidly than at coding regions, and that replacement rates over coding regions correlate with polymerase density. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL4131
4 Samples
Download data: TXT
Series
Accession:
GSE6667
ID:
200006667
8.

Ratios for G1 arrested cells (Agilent array)

(Submitter supplied) Chromatin plays roles in processes governed by different time scales. To assay the dynamic behaviour of chromatin in living cells, we used genomic tiling arrays to measure histone H3 turnover in G1-arrested S. cerevisiae at single-nucleosome resolution over 4% of the genome, and over the entire genome at lower (~265 bp) resolution. We find that nucleosomes at promoters are replaced more rapidly than at coding regions, and that replacement rates over coding regions correlate with polymerase density. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL3737
7 Samples
Download data: TXT
Series
Accession:
GSE6666
ID:
200006666
9.

Ratios for G1 arrested cells (Printed array)

(Submitter supplied) Chromatin plays roles in processes governed by different time scales. To assay the dynamic behaviour of chromatin in living cells, we used genomic tiling arrays to measure histone H3 turnover in G1-arrested S. cerevisiae at single-nucleosome resolution over 4% of the genome, and over the entire genome at lower (~265 bp) resolution. We find that nucleosomes at promoters are replaced more rapidly than at coding regions, and that replacement rates over coding regions correlate with polymerase density. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL2625
8 Samples
Download data: TXT
Series
Accession:
GSE6665
ID:
200006665
10.

Ratios for unsync cells

(Submitter supplied) Chromatin plays roles in processes governed by different time scales. To assay the dynamic behaviour of chromatin in living cells, we used genomic tiling arrays to measure histone H3 turnover in G1-arrested S. cerevisiae at single-nucleosome resolution over 4% of the genome, and over the entire genome at lower (~265 bp) resolution. We find that nucleosomes at promoters are replaced more rapidly than at coding regions, and that replacement rates over coding regions correlate with polymerase density. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL2625
8 Samples
Download data: TXT
Series
Accession:
GSE6664
ID:
200006664
11.

FACT and Spt6 Prevent Cryptic Transcription by Impeding H2A.Z Loading in Gene Bodies

(Submitter supplied) H2A.Z is a highly conserved histone variant involved in several key nuclear processes. It is incorporated into promoters by SWR-C-related chromatin remodeling complexes, but whether it is also actively excluded from non-promoter regions is not clear. Here, we provide genomic and biochemical evidence that RNA polymerase II (RNAPII) elongation-associated histone chaperones FACT and Spt6 both contribute to restricting H2A.Z from intragenic regions. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platforms:
GPL18340 GPL4131
116 Samples
Download data: GPR
Series
Accession:
GSE62880
ID:
200062880
12.

A genome-wide housekeeping role for TFIID and a highly stress-related role for SAGA in Saccharomyces cerevisiae

(Submitter supplied) TFIID and SAGA are the only two known yeast complexes that modify chromatin and deliver TBP to promoters. Previous genome wide expression studies indicated that TFIID and SAGA positively regulate most but not all yeast genes. Using a relatively low noise microarray approach, we have re-examined the genome-wide dependence on TFIID and SAGA. We find that TFIID and SAGA contribute to the expression of virtually the entire genome, with TFIID being preferred at ~90% of the genes, and SAGA being preferred at ~10%. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL760
1 Sample
Download data
Series
Accession:
GSE1061
ID:
200001061
13.

Genome-wide regulation by TFIID and SAGA

(Submitter supplied) TFIID and SAGA share a common set of TAFs, regulate chromatin, and deliver TBP to promoters. Here we examine their relationship within the context of the Saccharomyces cerevisiae genome-wide regulatory network. We find that while TFIID and SAGA make overlapping contributions to the expression of all genes, TFIID function predominates at ~90% and SAGA at ~10% of the measurable genome. Strikingly, SAGA-dominated genes are largely stress-induced and TAF-independent, and are down-regulated by the coordinate action of a variety of chromatin, TBP, and RNA polymerase II regulators. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL739
30 Samples
Download data
Series
Accession:
GSE885
ID:
200000885
14.

The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally

(Submitter supplied) Eukaryotic transcription is regulated through two complexes, the general transcription factor IID (TFIID) and the coactivator Spt-Ada-Gcn5 acetyltransferase (SAGA). Recent findings confirm that both TFIID and SAGA contribute to the synthesis of nearly all transcripts and are recruited genome-wide in yeast. However, how this broad recruitment confers selectivity under specific conditions remains an open question. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL19756 GPL13821
22 Samples
Download data: NARROWPEAK
Series
Accession:
GSE65902
ID:
200065902
15.

Genomic Run On (GRO): determination of the nascent transcriptional rates and mRNA levels in several yeast mutants (SAC3, SUS1, SRC1)

(Submitter supplied) We analyzed the effect of SAC3, SUS1 and SRC1 on the transcription rates, mRNA stabilities and mRNA levels by doing GRO experiments in a deletion mutants and the partial C-truncated version of Sac3 comparing with a wild type. Some data for mRNA amounts (sus1 ans src1 mutants) are not included because were already in GEO database: GSE920 and GSE6370 accession numbers.
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platforms:
GPL4565 GPL8568
9 Samples
Download data: TXT
Series
Accession:
GSE63769
ID:
200063769
16.

Genome-wide transcriptional dependencies on TAF1 functional domains

(Submitter supplied) TFIID plays a central role in regulating the expression of most eukaryotic genes. Of the 14 TAF subunits that compose TFIID, TAF1 is one of the largest and most functionally diverse. Yeast (Saccharomyces cerevisiae) TAF1 reportedly possesses at least four distinct activities including a histone acetyltransferase, and TBP, TAF, and promoter binding. Establishing the importance of each region in gene expression through deletion analysis has been hampered by the cellular requirement of TAF1 for viability. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL1220
14 Samples
Download data
Series
Accession:
GSE3006
ID:
200003006
17.

Genome-wide relationships between TAF1 and histone acetyltransferases in S. cerevisiae - chIP-chip study

(Submitter supplied) Evidence suggests that the TAF1 subunit of TFIID is a histone acetyltransferase (HAT) that is functionally redundant with the Gcn5 HAT of the SAGA and ADA complexes. Here we test a number of predictions of this hypothesis by examining the in vivo histone acetylation targets of TAF1 and Gcn5, and re-examining the basis for the reported genome-wide functional redundancy between TAF1 and Gcn5. Our findings do not support a number of basic tenets of the hypothesis, thus bringing into question the physiological presence of any TAF1 HAT function in yeast. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL1924
8 Samples
Download data
Series
Accession:
GSE3346
ID:
200003346
18.

Genome-wide relationships between TAF1 and histone acetyltransferases in S. cerevisiae

(Submitter supplied) Evidence suggests that the TAF1 subunit of TFIID is a histone acetyltransferase (HAT) that is functionally redundant with the Gcn5 HAT of the SAGA and ADA complexes. Here we test a number of predictions of this hypothesis by examining the in vivo histone acetylation targets of TAF1 and Gcn5, and re-examining the basis for the reported genome-wide functional redundancy between TAF1 and Gcn5. Our findings do not support a number of basic tenets of the hypothesis, thus bringing into question the physiological presence of any TAF1 HAT function in yeast. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL1220
38 Samples
Download data
Series
Accession:
GSE3345
ID:
200003345
19.

Genetic dissection of NuA4-directed chromatin transactions throughout the S. cerevisiae genome

(Submitter supplied) Acetylation of histone tails has long been associated with gene activation. Exactly how acetylation regulates gene expression is not fully known. Acetylation events at specific sites or collections of sites on histones elicit distinct outcomes. Here we examine the downstream consequences of histone acetylation by the histone H4 acetyltransferase NuA4 on a genomic scale. Evidence is presented that Bdf1, which is known to bind to acetylated lysine H4 tails in vitro, binds to nucleosomes in vivo and that this binding is dependent upon Esa1, the catalytic subunit of NuA4. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL1924
22 Samples
Download data
Series
Accession:
GSE6707
ID:
200006707
20.

Isw2 ChIP in S cerevisiae

(Submitter supplied) Study to detect to genome wide localization of the ATP dependent chromatin remodelling factor Isw2 using ChIP. Keywords: ChIP chip
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL6476
6 Samples
Download data: CEL
Series
Accession:
GSE8815
ID:
200008815
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=10|qty=2|blobid=MCID_66927844097f4570475b2d57|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Support Center