U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Next Generation Sequencing to Identify Targets of the C. albicans Dfi1 Pathway

(Submitter supplied) Purpose: To identify downstream genetics targets of the Dfi1 pathway during Dfi1 activating conditions. Methods: WT and dfi1 null cells were grown in minimal media, then treated with either 4uM of the calcium ionophore A23187 or an equal volume of 100% ethanol vehicle. After 30 min of treatment, cells were collected for RNA extraction and analysis. RNA was extracted using the Qiagen RNAeasy kit, then sent to the Tufts University Core Facility for library prep and sequencing. more...
Organism:
Candida albicans
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19036
12 Samples
Download data: DIFF
Series
Accession:
GSE193641
ID:
200193641
2.

Functional Portrait of Irf1 (Orf19.217), a Regulator of Morphogenesis and Iron Homeostasis in Candida albicans

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Candida albicans
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL19036 GPL24725
24 Samples
Download data: BED
Series
Accession:
GSE207073
ID:
200207073
3.

Functional Portrait of Irf1 (Orf19.217), a Regulator of Morphogenesis and Iron Homeostasis in Candida albicans [RNA-Seq]

(Submitter supplied) The fungus Candida albicans is part of the human microbiome and mainly colonises the GI tract of healthy individuals. However, when the balance in the GI tract is disturbed, the fungus can switch from a commensal to a virulent lifestyle and can turn into a life-threatening pathogen. Life in the host is characterised by a constant struggle for nutrients, essential trace elements such as iron, copper and zinc are particularly important. more...
Organism:
Candida albicans
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19036
18 Samples
Download data: TXT
Series
Accession:
GSE207072
ID:
200207072
4.

Functional Portrait of Irf1 (Orf19.217), a Regulator of Morphogenesis and Iron Homeostasis in Candida albicans [ChIP-Seq]

(Submitter supplied) The fungus Candida albicans is part of the human microbiome and mainly colonises the GI tract of healthy individuals. However, when the balance in the GI tract is disturbed, the fungus can switch from a commensal to a virulent lifestyle and can turn into a life-threatening pathogen. Life in the host is characterised by a constant struggle for nutrients, essential trace elements such as iron, copper and zinc are particularly important. more...
Organism:
Candida albicans
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL24725
6 Samples
Download data: BED
Series
Accession:
GSE207033
ID:
200207033
5.

The role of the C. albicans transcriptional repressor NRG1 during filamentation and disseminated candidiasis is strain-dependent

(Submitter supplied) Clinical isolates of the human fungal pathogen Candida albicans show significant variation in their ability to undergo in vitro filamentation. In this study, we show that Nrg1, a key repressor of filamentation and filament specific gene expression in standard laboratory strain, has strain dependent functions, especially during infection.
Organism:
Candida albicans
Type:
Other
Platform:
GPL34110
44 Samples
Download data: RCC, XLSX
Series
Accession:
GSE253732
ID:
200253732
6.

Transcriptional response of Candida dubliniensis during hypha formation and environmental change

(Submitter supplied) Transcriptional response of Candida dubliniensis during hypha formation and environmental change (temperature, pH, density and nutrients). Transcript profiling of C. dubliniensis identified a core shared transcriptional response with C. albicans during hypha formation and growth at alkaline pH. However, C. albicans expresses several unique hypha-specific genes, including ALS3, HYR1 and SAP4 and 5. Transcript profiling also revealed a novel role for NRG1 in regulating ferric reductases in C. more...
Organism:
Candida dubliniensis
Type:
Expression profiling by array
Platform:
GPL10110
32 Samples
Download data: GPR
Series
Accession:
GSE20537
ID:
200020537
7.

Global transcriptomic analyses of the candida albicans response to treatment with a novel inhibitor of filamentation

(Submitter supplied) The opportunistic pathogenic fungus Candida albicans can cause devastating infections in severely compromised patients. Its ability to undergo a morphogenetic transition from yeast to filamentous forms allows it to penetrate tissues and cause damage, and the expression of a number of pathogenetic mechanisms are also coordinately regulated with this yeast-to-hyphae conversion. Therefore, it is widely considered that filamentation represents one of the main virulence factors of C. more...
Organism:
Candida albicans
Type:
Expression profiling by high throughput sequencing
Platform:
GPL15645
6 Samples
Download data: CSV, TXT
Series
Accession:
GSE136116
ID:
200136116
8.

Transcriptional profiling of Candida albicans SC5314, hgc1Δ and cph1Δ/efg1Δ in yeast-and hyphae-inducing conditions at two time points.

(Submitter supplied) Goal of this study was to determine metabolic adaptation processes in C. albicans associated to hyphal morphogenesis. Accessory to the metabolic profiling the corresponding transcriptome was investigated. To identify media-specific and general adaptation three different hyphae stimuli were used (M199 pH 7.4, Human serum and N-Aectylglucosamine) were used and compared again two respective yeast conditions (SD and M199 pH 4). more...
Organism:
Candida albicans
Type:
Expression profiling by high throughput sequencing
Platform:
GPL28323
132 Samples
Download data: CSV
Series
Accession:
GSE202941
ID:
200202941
9.

Transcriptional profiling of Mms21 deleted (mms21Δ/Δ) mutant Candida albicans strains

(Submitter supplied) Mms21 deletion in Candida albicans resulted in invasveness and filamentatation in YPD media at 30 degrees Celsius. Wild type SN148 do not make any Filaments in YPD at 30 degrees Celsius. The aim was to look for transcription profiling mms21 dleleted mutant against wild type to find genes up and down regulated in the mutant especially thoseones critical for filamentation
Organism:
Candida albicans
Type:
Expression profiling by high throughput sequencing
Platform:
GPL23041
4 Samples
Download data: TSV
Series
Accession:
GSE121210
ID:
200121210
10.

Transcriptional profiling of Mms21 deleted (mms21Δ/Δ) mutant Candida albicans strains

(Submitter supplied) Mms21 deleteion in Candida albicans resulted in invasveness and filamentatation in YPD media at 30 degrees Celsius. Wild type SN148 do not make any Filaments in YPD at 30 degrees Celsius. The aim was to look for transcription profiling mms21 dleleted mutant against wild type to find genes up and down regulated in the mutant especially thoseones critical for filamentation. Mms21 deleteion in Candida albicans resulted in invasveness and filamentatation in YPD media at 30 degrees Celsius. more...
Organism:
Candida albicans
Type:
Expression profiling by array
Platform:
GPL19196
2 Samples
Download data: TXT
Series
Accession:
GSE116544
ID:
200116544
11.

Filamentation is Associated with Reduced Pathogenicity of Multiple Non-albicans Candida Species

(Submitter supplied) Candidiasis affects a wide variety of immunocompromised individuals, including HIV/AIDS patients and cancer patients on chemotherapy. Candida albicans, a major human fungal pathogen, accounts for about 50% of all cases, while the remainder are caused by the less pathogenic non-albicans Candida species (NACS). These species are believed to be less pathogenic, in part, because they do not filament as readily or robustly as C. more...
Organism:
Candida parapsilosis; Candida tropicalis
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL21876 GPL18663
16 Samples
Download data: TXT
Series
Accession:
GSE134321
ID:
200134321
12.

A highly conserved tRNA modification contributes to C. albicans filamentation and virulence

(Submitter supplied) tRNA modifications play important roles in maintaining translation accuracy in all domains of life. Disruptions in the tRNA modification machinery, especially of the anticodon stem loop, can be lethal for many bacteria and lead to a broad range of phenotypes in baker’s yeast. Very little is known about the function of tRNA modifications in host-pathogen interactions, where rapidly changing environments and stresses require fast adaptations. more...
Organism:
Candida albicans
Type:
Other
Platform:
GPL22403
12 Samples
Download data: TXT
Series
Accession:
GSE199421
ID:
200199421
13.

Filamentation involves two overlapping, but distinct, programs of filamentation in the pathogenic fungus Candida albicans

(Submitter supplied) The ability of the human pathogenic fungus Candida albicans to switch between yeast-like and filamentous forms of growth has long been linked to pathogenesis. Numerous environmental conditions, including growth at high temperatures, nutrient limitation, and exposure to serum, can trigger this morphological switch and are frequently used in in vitro models to identify genes with roles in filamentation. more...
Organism:
Candida albicans
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19036
30 Samples
Download data: TXT
Series
Accession:
GSE99902
ID:
200099902
14.

Transcriptomic and Metabolomic Analysis Revealed Roles of Yck2 in Carbon Metabolism and Morphogenesis of Candida albicans

(Submitter supplied) Candida albicans is a part of the normal microbiome of human mucosa and is able to thrive in a wide range of host environments. As an opportunistic pathogen, the virulence of C. albicans is tied to its ability to switch between yeast and hyphal morphologies in response to various environmental cues, one of which includes nutrient availability. Thus, metabolic flexibility plays an important role in the virulence of the pathogen. more...
Organism:
Candida albicans SC5314
Type:
Expression profiling by high throughput sequencing
Platform:
GPL27535
6 Samples
Download data: XLSX
Series
Accession:
GSE138069
ID:
200138069
15.

Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant

(Submitter supplied) Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of drug resistance. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. more...
Organism:
Candida albicans
Type:
Expression profiling by high throughput sequencing
Platform:
GPL15645
12 Samples
Download data: XLS
Series
Accession:
GSE56174
ID:
200056174
16.

To analyze the effect of loss of mitochondria on the transcriptome of Candida albicans

(Submitter supplied) This set of experiment was done in order to analyze the effect of a dysfunctional mitochondria on C. albicans. The mutant was obtained by deleting the gene FZO1, which is known to be involved in mitochondrial biogenesis in S. cerevisiae. We show that the deletion of FZO1 leads to a change in mitochondrial morphology, which affects the mitochondrial membrane potential and causes the loss of mtDNA. Upon performing a transcriptome analysis, we observed that the mutant showed upregulation of genes like AOX2, MDR1 etc., while the genes involved in iron uptake were dysregulated. more...
Organism:
Candida albicans
Type:
Expression profiling by array
Platform:
GPL13440
6 Samples
Download data: TXT
Series
Accession:
GSE46003
ID:
200046003
17.

Regulation of filamentation in the human fungal pathogen Candida tropicalis

(Submitter supplied) The yeast-filament transition is essential for the virulence of a variety of fungi that are pathogenic to humans. N-acetylglucosamine (GlcNAc), a ubiquitous molecule in both the environment and host, is one of the most potent inducers of filamentation in Candida albicans and thermally dimorphic fungi such as Histoplasma capsulatum and Blastomyces dermatitidis. However, GlcNAc suppresses rather than promotes filamentation in Candida tropicalis, a fungal species that is closely related to C. more...
Organism:
Candida tropicalis MYA-3404
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20946
2 Samples
Download data: TXT
Series
Accession:
GSE73340
ID:
200073340
18.

Candida albicans PPG1, a serine/threonine phosphatase, plays a vital role in central carbon metabolisms under filament-inducing conditions: A multi-omics approach

(Submitter supplied) Candida albicansis the leading cause of life-threatening bloodstream candidiasis, especially among immunocompromised patients. The reversible morphological transition from yeast to hyphal filaments in response to host environmental cues facilitatesC.albicanstissue invasion, immune evasion, and dissemination. Hence, it is widely considered that filamentation represents one of the major virulence properties inC.albicans. more...
Organism:
Candida albicans
Type:
Expression profiling by high throughput sequencing
Platform:
GPL33213
8 Samples
Download data: TXT
Series
Accession:
GSE263609
ID:
200263609
19.

A unique iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Candida albicans
Type:
Expression profiling by array; Genome binding/occupancy profiling by array
Platforms:
GPL13696 GPL13813
32 Samples
Download data: GPR
Series
Accession:
GSE30593
ID:
200030593
20.

A unique iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis [ChIP_chip]

(Submitter supplied) The mammalian gastrointestinal tract and the bloodstream are highly disparate biological niches, and yet certain commensal-pathogenic microorganisms are able to thrive in both environments. Here, we report the evolution of a unique transcription circuit in the yeast, Candida albicans, which determines its fitness in both host niches. Our comprehensive analysis of the DNA-binding proteins that regulate iron uptake by this organism suggests the evolutionary intercalation of a transcriptional activator called Sef1 between two broadly conserved transcriptional repressors, Sfu1 and Hap43. more...
Organism:
Candida albicans
Type:
Genome binding/occupancy profiling by array
Platform:
GPL13696
10 Samples
Download data: GPR
Series
Accession:
GSE30591
ID:
200030591
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=2|qty=7|blobid=MCID_670da133475a635e851ddbd5|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Support Center