U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Analysis of changes in gene expression in epidermal stem cells upon loss of Polycomb silencing

(Submitter supplied) Although in vitro studies of embryonic stem cells have identified Polycomb repressor complexes (PRCs) as key regulators of differentiation, it remains unclear as to how PRC-mediated mechanisms control fates of multipotent progenitors in developing tissues. Here, we show that an essential PRC component, Ezh2, is expressed in epidermal progenitors, but diminishes concomitant with embryonic differentiation and with postnatal decline in proliferative activity. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
4 Samples
Download data: CEL, CHP
Series
Accession:
GSE14045
ID:
200014045
2.

EZH1 and EZH2 Co-Govern Histone H3-K27 Trimethylation and Are Essential for Hair Follicle Homeostasis and Wound Repair

(Submitter supplied) Polycomb protein group (PcG)-dependent trimethylation on H3-K27(H3K27me3) regulates identity of embryonic stem cells (SCs). How H3K27me3 governs adult SCs and tissue development is unclear. Here, we conditionally target H3-K27-methyltransferases Ezh2 and Ezh1 to address their roles in mouse skin homeostasis. Postnatal phenotypes appear only in doubly-targeted skin, where H3K27me3 is abolished, revealing functional redundancy in EZH1/2 proteins. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
6 Samples
Download data: CEL, CHP
Series
Accession:
GSE26616
ID:
200026616
3.

Epigenetic antagonism between Snf5 and Ezh2 during oncogenic transformation and elevated levels of H3K27me3 in Snf5-deficient cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by genome tiling array
Platforms:
GPL5811 GPL8321
28 Samples
Download data: BAR, BED, CEL
Series
Accession:
GSE23659
ID:
200023659
4.

Elevated levels of H3K27me3 in Snf5-deficient cells

(Submitter supplied) Epigenetic alterations have been increasingly implicated in oncogenesis. Analysis of Drosophila mutants suggests that Polycomb and SWI/SNF complexes can serve antagonistic developmental roles. However, the relevance of this relationship to human disease is unclear. Here we have investigated functional relationships between these epigenetic regulators in oncogenic transformation. Mechanistically, we show that loss of the SNF5 tumor suppressor leads to elevated expression of the Polycomb gene EZH2 and that Polycomb targets are broadly H3K27-trimethylated and repressed in SNF5-deficient fibroblasts and cancers. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL5811
5 Samples
Download data: BAR, BED, CEL
Series
Accession:
GSE23658
ID:
200023658
5.

Epigenetic antagonism between Snf5 and Ezh2 during oncogenic transformation

(Submitter supplied) Epigenetic alterations have been increasingly implicated in oncogenesis. Analysis of Drosophila mutants suggests that Polycomb and SWI/SNF complexes can serve antagonistic developmental roles. However, the relevance of this relationship to human disease is unclear. Here we have investigated functional relationships between these epigenetic regulators in oncogenic transformation. Mechanistically, we show that loss of the SNF5 tumor suppressor leads to elevated expression of the Polycomb gene EZH2 and that Polycomb targets are broadly H3K27-trimethylated and repressed in SNF5-deficient fibroblasts and cancers. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL8321
23 Samples
Download data: CEL
Series
Accession:
GSE23656
ID:
200023656
6.

Expression data from Ezh2-null erythrocyte/megakaryocyte progenitor (MEP)

(Submitter supplied) The polycomb group (PcG) proteins function in gene silencing through histone modifications. They form chromatin-associated multiprotein complexes, termed polycomb repressive complex (PRC) 1 and PRC2. These two complexes work in a coordinated manner in the maintenance of cellular memories through transcriptional repression of target genes. EZH2 is a catalytic component of PRC2 and trimethylates histone H3 at lysine 27 to transcriptionally repress the target genes. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL10333
4 Samples
Download data: TXT
Series
Accession:
GSE32929
ID:
200032929
7.

ChIP-on-chip from acute myeloid leukemia cell lines and clinical samples for H3K4me3, H3K27me3, and EZH2

(Submitter supplied) Histone modifcations at the p15INK4b gene were compared in sample with p15INK4b DNA methylation vs. samples with no DNA methylation AML clinical samples without DNA methylation exhibit bivalent histone modifications at p15INK4b, while clinical samples with DNA methylation display lower H3K4me3 and retain H3K27me3
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL8754
40 Samples
Download data: TXT
Series
Accession:
GSE16730
ID:
200016730
8.

Single Cell based genomewide gene expression analysis of murine bone-marrow derived Very Small Embryonic-Like Stem Cells (VSELs)

(Submitter supplied) Recently, we identified a population of Oct4+Sca-1+Lin-CD45- very small embryonic-like stem-cells (VSELs) in adult tissues. Open chromatin structure of pluripotency genes and genomic imprinting-related epigenetic mechanisms maintain pluripotency and quiescence of VSELs, respectively. However, global transcriptome signature of this rare stem-cell population remains elusive. Here, we demonstrate by genomewide gene-expression analysis with a small number of highly purified murine bone-marrow (BM)-derived VSELs, that Oct4+ VSELs i) express a similar, yet nonidentical, transcriptome as embryonic stem-cells (ESCs), ii) up-regulate cell-cycle checkpoint genes, iii) down-regulate genes involved in protein turnover and mitogenic pathways, and iv) highly express Ezh2, a polycomb group protein. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
9 Samples
Download data: CEL
Series
Accession:
GSE29281
ID:
200029281
9.

Epigenetic Control of Skeletal Development by the Histone Methyltransferase Ezh2

(Submitter supplied) Inhibition of H3K27 methyltransferase EZH2 enhances osteogenic commitment of human mesenchymal progenitors and Ezh2 inactivation in mouse calvarial cells induces a post-proliferative state concomitant with increased production of a bone-related mineralizing extra-cellular matrix.
Organism:
Mus musculus; Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL13112 GPL11154
19 Samples
Download data: TSV
Series
Accession:
GSE73075
ID:
200073075
10.

Gene expression profile of right ventricles from adult wild type and Ezh2-deficient hearts

(Submitter supplied) Adult-onset diseases can be associated with in utero events, but mechanisms for this remain unknown. The polycomb histone methyltransferase, Ezh2, stabilizes transcription by depositing repressive marks during development that persist into adulthood, but its function in postnatal organ homeostasis is unknown. We show that Ezh2 stabilizes cardiac gene expression and prevents cardiac pathology by repressing the homeodomain transcription factor Six1, which functions in cardiac progenitors but is stably silenced upon cardiac differentiation. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
4 Samples
Download data: TXT
Series
Accession:
GSE34274
ID:
200034274
11.

Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis

(Submitter supplied) Adult-onset diseases can be associated with in utero events, but mechanisms for such temporally distant dysregulation of organ function remain unknown. The polycomb histone methyltransferase, Ezh2, stabilizes transcription by depositing repressive histone marks during development that persist into adulthood, but the function of Ezh2-mediated transcriptional stability in postnatal organ homeostasis is not understood. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS4309
Platform:
GPL6246
9 Samples
Download data: CEL
Series
Accession:
GSE30076
ID:
200030076
12.
Full record GDS4309

Polycomb histone methyltransferase Ezh2-deficient hearts: right ventricle and interventricular septum

Analysis of right ventricle and interventricular septum from Ezh2-deficient adults. Loss of Ezh2 leads to cardiac hypertrophy and fibrosis. Results provide insight into the role of Ezh2 in postnatal organ homeostasis.
Organism:
Mus musculus
Type:
Expression profiling by array, transformed count, 2 genotype/variation sets
Platform:
GPL6246
Series:
GSE30076
9 Samples
Download data: CEL
13.

Jarid2 and PRC2, Partner in Regulating Gene Expression

(Submitter supplied) The Polycomb Group proteins foster gene repression profiles required for proper development and unimpaired adulthood, and comprise the components of the PRC2 complex including the histone H3 lysine 27 (H3K27) methyltransferase Ezh2. How mammalian PRC2 accesses chromatin is unclear. We find that Jarid2 associates with PRC2 and stimulates its enzymatic activity in vitro. Jarid2 contains a Jumonji C domain, but is devoid of detectable histone demethylase activity. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9185
2 Samples
Download data: BED, WIG
Series
Accession:
GSE19708
ID:
200019708
14.

EZH2 Variants Differentially Regulate Polycomb Repressive Complex 2 in Histone Methylation and Cell Differentiation

(Submitter supplied) Background: Polycomb repressive complex 2 (PRC2) is responsible for establishing and maintaining histone H3K27 methylation during cell differentiation and proliferation. H3K27 can be mono-, di-, or tri-methylated, resulting in differential gene regulation. However, it remains unknown how PRC2 specifies the degree and biological effects of H3K27 methylation within a given cellular context. One way to determine PRC2 specificity may be through alternative splicing of Ezh2, PRC2’s catalytic subunit, during cell differentiation and tissue maturation. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
10 Samples
Download data: BED, BROADPEAK, TXT
Series
Accession:
GSE123174
ID:
200123174
15.

The Polycomb Group Protein Suz12 Is Required for Embryonic Stem Cell Differentiation

(Submitter supplied) Polycomb group (PcG) proteins form multiprotein complexes, called Polycomb repressive complexes (PRCs). PRC2 contains the PcG proteins EZH2, SUZ12, and EED and represses transcription through methylation of lysine (K) 27 of histone H3 (H3). Suz12 is essential for PRC2 activity and its inactivation results in early lethality of mouse embryos.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
4 Samples
Download data: CEL, CHP
Series
Accession:
GSE31354
ID:
200031354
16.

mRNA expression after siRNA-mediated knock down of Enhancer of zeste homolog 2 (Ezh2) in human umbilical vein endothelial cells

(Submitter supplied) mRNA expression after Ezh2 knock down was analyzed to identify genes regulated by Ezh2.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL6480
3 Samples
Download data: TXT
Series
Accession:
GSE41610
ID:
200041610
17.

Opposing roles of polycomb repressive complexes in hematopoietic stem and progenitor cells

(Submitter supplied) Polycomb group (PcG) proteins are transcriptional repressors with a central role in the establishment and maintenance of gene expression patterns during development. We have investigated the role of Polycomb Repressive Complexes (PRCs) in hematopoietic stem cells (HSCs) and progenitor populations. We show that mice with loss of function mutations in PRC2 components display enhanced HSC/progenitor population activity, whereas mutations that disrupt PRC1 or PhoRC are associated with HSC/progenitor cell defects. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6887
18 Samples
Download data: TXT
Series
Accession:
GSE21404
ID:
200021404
18.

RNA expression profiling in G-CCE cells with a knock down of MMTR or overexpression of the full length, N-terminal or C-terminal of MMTR

(Submitter supplied) The goal of this study is to compare total RNA expression profiles among wild type, MMTR knock down, and overexpression of full length, C-terminal and N-terminal in G-CCE cells at d0 and d3 after differentiation. All cell lines were maintained in DMEM supplemented with 15% heat-inactivated fetal bovine serum (FBS; Gibco, 16141079), 1X MEM Non-Essential Amino Acids Solution (Sigma-Aldrich, M7145), 300 μM monothioglycerol (Sigma-Aldrich, M6145), 1X penicillin/streptomycin, and 1000 U/ml Leukima inhibitory factor (LIF, Sigma-Aldrich, ESG1107) in 0.1% gelatin coated cell culture dishes. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6887
10 Samples
Download data: TXT
Series
Accession:
GSE145561
ID:
200145561
19.

Bap1 loss results in EZH2 dependent transformation

(Submitter supplied) Analysis of sorted granulocyte macrophage progenitors (GMPs) in control and Bap1-deficient bone marrow cells. Loss of Bap1 in the hematopoietic compartments results in an MDS-like disease. These data allow for the examination of the genetic underpinnings of Bap1 loss in disease.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18635
6 Samples
Download data: TXT
Series
Accession:
GSE61577
ID:
200061577
20.

Bap1 loss results in EZH2 dependent transformation

(Submitter supplied) BAP1 and ASXL1 interact to form a polycomb deubiquitinase complex that removes monoubiquitin from histone H2A lysine 119 (H2AK119Ub). However, BAP1 and ASXL1 are mutated in distinct cancer types, consistent with independent roles in regulating epigenetic state and malignant transformation. Here we demonstrate that Bap1 loss results in increased trimethylated histone H3 lysine 27 (H3K27me3), elevated Ezh2 expression, and enhanced repression of Polycomb Repressive Complex 2 (PRC2) targets. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
11 Samples
Download data: BW
Series
Accession:
GSE61360
ID:
200061360
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=15|qty=3|blobid=MCID_6708c5acc7d3ca20d5426af5|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Support Center