U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 18

1.

Heterologous expression of sahH reveals that biofilm formation is autoinducer-2 independent in Streptococcus sanguinis, but is associated with an intact AMC

(Submitter supplied) In a transcriptome based trail, we figured out that the deletion of luxS has a massive influence to cell growth and metabolism of Streptococcus sanguinis SK36. The biofilm defective luxS deletion mutant was comlemented by transgenic sahH from Pseudomonas aeruginosa. Thus 209 of 216 influenced genes of the luxS mutant compared to the isogenic wildype were restored in their expression (fold change of n ≥ 3; p ≤ 0.05), including genes involved in cell division processes, stress response and catabolite control. more...
Organism:
Streptococcus sanguinis SK36
Type:
Expression profiling by array
Platform:
GPL15399
12 Samples
Download data: CALLS, PAIR
Series
Accession:
GSE37007
ID:
200037007
2.

Expression data of S. mutans in semi synthetic medium with 0.5% sucrose

(Submitter supplied) The autoinducer-2 (AI-2) group of signalling molecules represent a new type of cell-cell communication since they are produced by many phylogenetic groups of bacteria as the by product of a metabolic transformation carried out by the luxS enzyme. To separate the metabolic function of the luxS enzyme from the signalling role of AI-2, we carried out a global transcriptome analysis of a luxS null mutant of Streptococcus mutans UA159, an important cariogenic bacterium and crucial component of the dental plaque biofilm community. more...
Organism:
Streptococcus mutans; Streptococcus mutans UA159
Type:
Expression profiling by array
Platform:
GPL4031
44 Samples
Download data
Series
Accession:
GSE5451
ID:
200005451
3.

Expression data of Actinobacillus pleuropneumoniae 4074 and the ΔluxS mutant of Actinobacillus pleuropneumoniae 4074

(Submitter supplied) LuxS is an enzyme involved in the activated methyl cycle and the by-product autoinducer 2 (AI-2) was a quorum sensing signal in some species. In our previous study, the functional LuxS in AI-2 production was verified in the porcine respiratory pathogen Actinobacillus pleuropneumoniae. Enhanced biofilm formation and reduced virulence were observed in the luxS mutant. To comprehensively understand the luxS function, in this study, the transcriptional profiles were compared between the A. more...
Organism:
Actinobacillus pleuropneumoniae
Type:
Expression profiling by array
Platform:
GPL9691
16 Samples
Download data: TXT
Series
Accession:
GSE19056
ID:
200019056
4.

Transcriptional and metabolomic consequences of luxS inactivation reveal a metabolic rather than quorum sensing role for LuxS in Lactobacillus reuteri 100-23

(Submitter supplied) Autoinducer-2 (AI-2)-mediated quorum sensing has been extensively studied in relation to the regulation of microbial behaviour. There are however two potential roles for the AI-2 synthase (LuxS). The first is in the production of AI-2 and the second is as an enzyme in the activated methyl cycle where it catalyses the conversion of S-ribosylhomocysteine to homocysteine. The by-product of the reaction catalysed by LuxS is (S)-4,5-dihydroxy-2,3-pentanedione (DPD), which spontaneously forms the furanones known collectively as AI-2. more...
Organism:
Limosilactobacillus reuteri subsp. rodentium
Type:
Expression profiling by array
Platform:
GPL10986
8 Samples
Download data: TXT
Series
Accession:
GSE32520
ID:
200032520
5.

AI-2-dependent gene regulation in Staphylococcus epidermidis

(Submitter supplied) Autoinducer 2 (AI-2), a widespread by-product of the LuxS-catalyzed S-ribosylhomocysteine cleavage reaction in the activated methyl cycle, has been suggested to serve as an intra- and interspecies signaling molecule, but in many bacteria AI-2 control of gene expression is not completely understood. Particularly, we have a lack of knowledge about AI-2 signaling in the important human pathogens Staphylococcus aureus and S. more...
Organism:
Staphylococcus epidermidis ATCC 12228; Staphylococcus aureus subsp. aureus MW2; Granulibacter bethesdensis; Staphylococcus epidermidis; Chlamydia muridarum; Staphylococcus epidermidis RP62A; Chlamydia caviae GPIC; Staphylococcus haemolyticus JCSC1435; Coxiella burnetii; Rickettsia rickettsii; Chlamydia pneumoniae AR39; Borreliella burgdorferi B31; Coxiella burnetii RSA 493; Chlamydia trachomatis D/UW-3/CX
Type:
Expression profiling by array
Platform:
GPL4692
9 Samples
Download data: CEL, CHP
Series
Accession:
GSE9427
ID:
200009427
6.

Salmonella enterica Typhimurium grown with and without glucose

(Submitter supplied) Cell to cell communication in bacteria to regulate various cellular processes with respect to their population density is termed quorum sensing and is achieved using signaling molecules called autoinducers. LuxS, which is involved in the synthesis of the autoinducer molecule-2 (AI-2), is conserved in several Gram-positive and Gram-negative bacteria including the enteric pathogen Salmonella Typhimurium. more...
Organism:
Salmonella enterica subsp. enterica serovar Typhimurium; Salmonella enterica subsp. enterica serovar Typhi str. CT18; Salmonella enterica subsp. enterica serovar Typhi str. Ty2; Salmonella enterica subsp. enterica serovar Typhimurium str. LT2
Type:
Expression profiling by array
Platforms:
GPL5069 GPL5096
44 Samples
Download data: GPR
Series
Accession:
GSE7558
ID:
200007558
7.

Porphyromonas gingivalis investigated by RNA-Seq

(Submitter supplied) Comparison of transcriptomes for wild-type and the following mutants: LuxS, GppX, cdhR
Organism:
Porphyromonas gingivalis
Type:
Expression profiling by high throughput sequencing
Platform:
GPL14970
10 Samples
Download data: TXT
Series
Accession:
GSE34212
ID:
200034212
8.

AI-2 quorum sensing in *Yersinia pestis*

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Yersinia pestis
Type:
Expression profiling by array
Platforms:
GPL10439 GPL10017
54 Samples
Download data: TXT
Series
Accession:
GSE30342
ID:
200030342
9.

Transcriptional analysis of temperature regulation in Yersinia pestis

(Submitter supplied) Temperature is a key environmental factor for facultative pathogens during the host adaptation response. To assess the functional role of temperature in Yersinia pestis, a microarray study was conducted comparing the Δpgm (pigmentation-negative) R88 strain grown at 37°C or 30°C.
Organism:
Yersinia pestis
Type:
Expression profiling by array
Platform:
GPL10439
6 Samples
Download data: TXT
Series
Accession:
GSE30333
ID:
200030333
10.

Transcriptional analysis of AI-2 treatment in Yersinia pestis at 30°C

(Submitter supplied) Yersinia pestis, the etiological agent of plague, is able to sense cell density by quorum sensing. The function of quorum sensing in Y. pestis is not clear. Here, the process of autoinducer-2 (AI-2) quorum sensing was investigated by comparing transcript profiles when AI-2 quorum-sensing signal is added in to control. The strain Δpgm (pigmentation-negative) mutant was used as wild type.The control consisted of cells grown and treated under the same conditions without added signals.
Organism:
Yersinia pestis
Type:
Expression profiling by array
Platform:
GPL10439
6 Samples
Download data: TXT
Series
Accession:
GSE30237
ID:
200030237
11.

3 quorum sensing signals add in microarray comparison in Yersinia pestis at 30°C

(Submitter supplied) The quorum-sensing system has been linked to diverse phenotypes and regulatory changes in pathogenic bacteria. In strain CO92, the AI-2 signal is produced in a luxS-dependent manner, reaching maximal levels of 2.5 μM in late logarithmic growth, and both wild type and pigmentation mutant strains made equivalent levels of AI-2. Yersinia pestis CO92 possesses a chromosomal lsr locus encoding factors involved in the binding and import of AI-2, and confirming this assignment, an lsr deletion increased extracellular pools of AI-2. more...
Organism:
Yersinia pestis
Type:
Expression profiling by array
Platform:
GPL10017
6 Samples
Download data: TXT
Series
Accession:
GSE30109
ID:
200030109
12.

LuxS/AI-2 quorum sensing microarray comparison in Yersinia pestis at 30°C

(Submitter supplied) The AI-2 quorum-sensing system has been linked to diverse phenotypes and regulatory changes in pathogenic bacteria. In strain CO92, the AI-2 signal is produced in a luxS-dependent manner, reaching maximal levels of 2.5 μM in late logarithmic growth, and both wild type and pigmentation mutant strains made equivalent levels of AI-2. Y. pestis CO92 possesses a chromosomal lsr locus encoding factors involved in the binding and import of AI-2, and confirming this assignment, an lsr deletion increased extracellular pools of AI-2. more...
Organism:
Yersinia pestis
Type:
Expression profiling by array
Platform:
GPL10017
6 Samples
Download data: TXT
Series
Accession:
GSE30108
ID:
200030108
13.

Transcriptional analysis of luxS-null strain in Yersinia pestis CO92 at 37°C

(Submitter supplied) Yersinia pestis, the etiological agent of plague, is able to sense cell density by quorum sensing. The function of quorum sensing in Y. pestis is not clear. Here, the process of autoinducer 2 (AI-2) quorum sensing was investigated by comparing transcript profiles when luxS gene was knocked out. The luxS gene encodes S-ribosylhomocysteinase which can produce DPD, a precursor of AI-2. The strain ∆pgm (pigmentation-negative) mutant R88 was called wild type. more...
Organism:
Yersinia pestis
Type:
Expression profiling by array
Platform:
GPL10439
6 Samples
Download data: TXT
Series
Accession:
GSE22849
ID:
200022849
14.

Transcription analysis of AI-2 signal add in experiment in Yersinia pestis CO92 at 37°C

(Submitter supplied) Yersinia pestis, the etiological agent of plague, is able to sense cell density by quorum sensing. The function of quorum sensing in Y. pestis is not clear. Here, the process of autoinducer-2 (AI-2) quorum sensing was investigated by comparing transcript profiles when AI-2 quorum-sensing signal is added in. The strain ∆pgm(pigmentation-negative) mutant R88 was used as wild type. The control consisted of cells grown and treated under the same conditions without added signals.
Organism:
Yersinia pestis
Type:
Expression profiling by array
Platform:
GPL10439
6 Samples
Download data: TXT
Series
Accession:
GSE22848
ID:
200022848
15.

Transcriptional analysis of AHLs signals add in experiment inYersinia pestis CO92 at 37°C

(Submitter supplied) Yersinia pestis, the etiological agent of plague, is able to sense cell density by quorum sensing. The function of quorum sensing in Y. pestis is not clear. Here, the process of AHL quorum sensing was investigated by comparing transcript profiles when two AHL quorum-sensing signals are added in. The strain ∆pgm (pigmentation-negative) mutant R88 was called wild type. The two AHLs signals are N-(3-Oxooctanoyl)-L-homoserine lactone and N-Hexanoyl-DL-homoserine lactone.The control consisted of cells grown and treated under the same conditions without added signals.
Organism:
Yersinia pestis
Type:
Expression profiling by array
Platform:
GPL10439
6 Samples
Download data: TXT
Series
Accession:
GSE22847
ID:
200022847
16.

Transcriptional analysis of three quorum sensing signals add in experiment inYersinia pestis CO92 at 37°C

(Submitter supplied) Yersinia pestis, the etiological agent of plague, is able to sense cell density by quorum sensing. The function of quorum sensing in Y. pestis is not clear. Here, the process of quorum sensing was investigated by comparing transcript profiles when three quorum-sensing signals are added in. The strain ∆pgm (pigmentation-negative) mutant R88 was used as wild type. The three signals are AI-2, AHLs (N-(3-Oxooctanoyl)-L-homoserine lactone and N-Hexanoyl-DL-homoserine lactone).The control consisted of cells grown and treated under the same conditions without added signals.
Organism:
Yersinia pestis
Type:
Expression profiling by array
Platform:
GPL10439
6 Samples
Download data: TXT
Series
Accession:
GSE22846
ID:
200022846
17.

Transcriptional analysis of quorum sensing deficient in Yersinia pestis CO92 at 37°C

(Submitter supplied) Yersinia pestis, the etiological agent of plague, is able to sense cell density by quorum sensing. The function of quorum sensing in Y. pestis is not clear. Here, the process of quorum sensing was investigated by comparing transcript profiles when three quorum-sensing synthase genes are knocked out. Two strains, ∆pgm (pigmentation-negative) mutant R88 as treatment and quorum sensing null strain R115 with mutations (∆pgm, ∆ypeIR, ∆yspIR, and ∆luxS) as control, are used in this analysis.
Organism:
Yersinia pestis
Type:
Expression profiling by array
Platform:
GPL10439
6 Samples
Download data: TXT
Series
Accession:
GSE21911
ID:
200021911
18.

Transcriptional analysis of quorum sensing null strain in Yersinia pestis CO92 at 30°C

(Submitter supplied) Yersinia pestis is the etiology of plague that is able to sense cell density by quorum sensing. The function of quorum sensing in Y.pestis is not clear. Here, the process of quorum sensing was investigated by comparing transcript profiles when three quorum sensing synthase genes are knocked out. Two strains, ∆pgm (pigmentation-negative) mutant R88 as treatment and 3XQS mutant with mutation (∆pgm, ∆ypeIR, ∆yspIR, and ∆luxS) R115 as control are used in this analysis.
Organism:
Yersinia pestis
Type:
Expression profiling by array
Platform:
GPL10017
6 Samples
Download data: TXT
Series
Accession:
GSE20217
ID:
200020217
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=6|qty=26|blobid=MCID_673bb8ace6b130283a19736a|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center